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Abstract

In recent years there has been a dramatic progress in the understanding of the

non-perturbative structure of various physical theories. In particular string theory

has been vastly developed during these years, where a lot of duality conjectures

between the di�erent string theories have arisen. The introductory text of this

thesis is an attempt to describe this development in short and to make a brief

overview of the subject. Special focus is put on solitonic solutions in various �eld

theories, which is the corner stone for these duality conjectures. The introduction

of supersymmetry is also essential for the understanding of duality by its natural

way of handling BPS-states through the algebra. In string theory, which is not only

a supersymmetric theory but also includes gravity, these studies are put together

through the discovery of various p-brane solutions to the background �eld equations.

The geometrical structure of these solutions is studied in some of the papers in this

thesis. In a generalization to the treatment of p-branes as solutions which break

the local vacuum symmetry, the theory of almost product structures (APS-theory)

has arisen as the natural candidate to the study of the intricate geometry of these

solutions. The last two papers deal with this ansatz where it is also seen that APS-

theory is the most natural way of treating all kinds of splitting of manifolds including

�brations, Yang{Mills theory and Kaluza{Klein theory.
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There are always a lot of di�erent conventions used in the physical literature and as

this thesis covers a big area it is, of course, di�cult to �nd a convention that covers

it all. But for this thesis to be at all readable I had to choose and stick to one of

the many possibilities out there.
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Target-SuperSpace coordinates zM = (xm; ��)
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TS bosonic coordinate indices m; n; p; q

TS fermionic coord. indices �; �; �; �

TS bosonic non-coord. indices a; b; c; d

TS fermionic non-coord. indices �; �; 
; �

TS bos. orient. non-coord. ind. �a;�b; �c; �d

TS ferm. orient. non-coord. ind. ��; ��; �
; ��

World-SuperSheet coordinates zM = (xm; ��)

WSS coordinate indices M; N; P; Q

WSS non-coordinate indices A;B; C; D

WS bosonic coordinate indices m; n; p; q

WS fermionic coord. indices �; �; �; �

WS bosonic non-coord. indices a; b; c; d

WS fermionic non-coord. indices �; �; 
; �

Normal-Space non-coord. indices A0; B0; C0; D0

NS bosonic non-coord. indices a0; b0; c0; d0

NS fermionic non-coord. indices �0; �0; 
0; �0

Gauge indices i; j; k; l
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1
Introduction

The progress of theoretical physics the last decades can adequately be expressed by

the word symmetry. There is a large number of new symmetries that have arisen in

physical theories under this period. Non-abelian gauge symmetry, supersymmetry

and duality are perhaps those of greatest importance lately. This introductory text

is an attempt to shed some light on these subjects without the need of too much

technicality.

In 1954 Yang and Mills introduced a non-abelian generalization to ordinary

electro-magnetism where the internal symmetry could be an arbitrary gauge group.

Ideas of this kind arose through Oskar Klein's work two decades earlier but then

in the form of what today is called Kaluza{Klein theory. Modern Yang{Mills the-

ory is described through the concept of principal bundles, where the gauge group

is called the internal symmetry group of the principal bundle and the space-time

manifold its base manifold. From bundle analysis it is clear that the gauge theory

could equivalently be described in either the total space of the principal bundle or

as a twisting of the gauge group along directions only in the base manifold. While

ordinary Yang{Mills theory is �rmly based on the latter alternative, Kaluza{Klein

theory is an example of the former. In Kaluza{Klein theory the dynamics of the

gauge �eld arises through ordinary gravity in the total space. In chapter 2 we will

compare these points of view through yet another ansatz, namely that of almost

product structures. Almost product structures is seen to be the most general ap-

proach to a splitting of a manifold by which principal bundles and Kaluza{Klein

theory are only special cases. It is only through this APS ansatz that the true

geometrical features of the manifold can be explored. Through this theory, dubbed

APS-theory, these two are put on an equal footing and the geometry of such things as

the coupling constant in Yang{Mills theory and the dilaton in Kaluza{Klein theory

can be explored.

In ordinary �eld theory we are used to the concept of sources coupled to various

1



2 Chapter 1 Introduction

�elds. These sources are classically built upon conserved currents which are derived

from some symmetry through Noether's theorem. By integrating this current over

the spatial part of the manifold one obtains the total charge of the source. While

studying the free �eld solutions in ordinary four dimensional �eld theory one sees

that these sources usually can be taken to be point particles carrying the charge in

question. These source particles are referred to as fundamental electrically charged

particles. The coupling between the source particles and the �elds is tunable through

a coupling constant. In quantum �eld theory this coupling constant is used as an

expansion parameter in a perturbation series counting the number of loops in certain

Feynman diagrams. An interesting feature arising in �eld theories with non-linear

self-interactions are classical solutions which are purely non-perturbative in the sense

that they can not be seen in a perturbation expansion. These solutions have the

property of being lumps of energy localized at some point in space. They prove to

have similar dynamical properties as ordinary particles but are described through a

topological current instead of the Noether current for fundamental particles. These

objects, called solitons, thus carry a topological charge which in the case of Yang{

Mills theory is called magnetic. From Yang{Mills theory the topological origin of

these charges is best understood through the winding of the gauge group over the

base manifold. In chapter 3 the concept of solitons is explored by studying some

general examples including magnetic monopoles in the Georgi{Glashow model. An

interesting feature that arises here is the Bogomol'nyi bound by which the mass

of the soliton is bounded from below. Solutions satisfying this bound are called

BPS saturated and these play an important role in modern theories including string

theory. For BPS states the mass is exactly given by the charge of the state.

Maybe the most interesting feature of modern physics is the concept of duality,

which �nds its origin through these solitonic solutions of ordinary �eld theory. Dual-

ity imposes a symmetry of the theory under the exchange of fundamental electrically

charged particles with solitonic magnetically charged objects. As a basic property

of the solitons is that their mass is inversely proportional to a coupling constant, the

duality symmetry requires that at the same time the coupling constant is replaced by

its inverse. This leads to a strong-weak relation through the duality transformation.

What is weakly coupled in one theory is strongly coupled in its dual. This opens for

the possibility of going beyond perturbation theory in order to understand strongly

coupled theories. In the latter part of chapter 3 some toy models for duality are

explored including duality in ordinary electro-magnetic �eld theory.

All these features discussed are given a more natural explanation through the

introduction of supersymmetry as a symmetry between the bosonic sector and the

fermionic sector of a theory. Here representation theory forces the magnetically

charged solitons to be BPS states. The explanation for this is quite simple. In a

Yang{Mills{Higgs system the breaking of the gauge symmetry through a vacuum

solution makes the W bosons and the Higgs to acquire masses. In representation

theory of supersymmetry there is a distinction between massive and massless repre-
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sentations. Massless representations have only half the degrees of freedom of massive

representations. Now there are massive representations with central charges which

reduces their degrees of freedom to one half when the mass equals the central charge

- these are the BPS states. So by requiring that the degrees of freedom are un-

changed by the symmetry breaking the solutions are forced by supersymmetry to be

BPS states. This is discussed in chapter 4 where the supersymmetric extensions to

ordinary Yang{Mills theory is looked at from a duality perspective.

For a theory to be realistic in explaining all kinds of phenomena gravity must be

included. The problem with gravity, explained through Einstein's general relativity,

is that it is not renormalizable and therefore not uni�able with quantum �eld theory.

As divergences in quantum �eld theory arise with di�erent signs for bosons and

fermions supersymmetric �eld theories have in general better quantum properties.

In chapter 4, extensions of general relativity to supergravity theories are discussed

and some background theories of suitable properties for the upcoming orientation

towards string theory are presented. It should be stressed, though, that ordinary

supergravity is not a consistent theory for quantum gravity by its own. Although

the divergences are damped by supersymmetry they are not completely removed.

String theory has today risen from an inspired, but incorrect, attempt in describ-

ing the strong force to a potential candidate for a fundamental theory describing

all physical interactions. There are basically two genres of string theory, namely

original bosonic string theory and the supersymmetrically extended version known

as superstring theory. The bosonic string theory is plagued with tachyons in the

spectrum and is thus seemingly unphysical. Nevertheless many features of super-

string theory appears already in the bosonic version and it can thus be instructive

to look at it as a toy model.

When it comes to string theory one usually talks about the �rst and second

revolution. The �rst revolution appeared in 1984-1985 when the �ve quantum me-

chanically consistent string theories were derived and shown to be totally anomaly

free. These included the type IIA, type IIB, type I, Heterotic SO(32) and Heterotic

E8 � E8. The massless spectrum of these theories are derived in chapter 5 where

some perturbative features are exploited. The highlight of this chapter is the con-

clusion that quantizing the string in the various consistent backgrounds brings the

background �elds on shell. That is the background �eld equations are obtained order

by order in the string parameter �0 when performing the �-functional calculation of

the string coupled to the background �elds. Strikingly, the low energy versions �ts

precisely into the supergravity picture exploited in the previous chapter.

Chapter 6 will mostly be dedicated to the second string revolution which took

place in the mid 90's. Here previous evidence of duality in various �eld theories

was lifted into the string theory arena. After a couple of years it was clear to the

physical society that the di�erent string theories were merely di�erent sides of the

same coin. In this research program the D = 11 supergravity theory, which were

formerly rejected, was again brought to light, now as the low energy limit of a
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much larger theory called M-theory. M-theory came to be the name of the theory

of which the di�erent string theories are merely some perturbative domains. As

all these theories only are known in the low energy limits, probes for all duality

conjectures regarding them would preferably be some topologically stable solutions

with quantum mechanically stable masses so they could be tracked through di�erent

regimes of the theories. These are the p-branes which are BPS-saturated solutions to

the background �eld equations. In chapter 6 the various types of p-branes appearing

in the theories are exploited through the so called brane-scan. Interesting features

of these solutions are that they are extreme black hole solutions charged under some

anti-symmetric tensor �eld. \Extreme" means that they do not emit any radiation

as they have zero temperature and are thus stable quantum mechanically. Again

light upon these solutions are brought to us directly from the supersymmetry algebra

in which the central charges contain the information of the present anti-symmetric

tensor �elds and thus the possible p-branes coupled to them.

In some of these p-brane solutions there are additional vector �elds living on the

brane. These are called D-branes which is short for Dirichlet-branes, a name that

arose through the feature of having strings ending on them. An interesting feature

concerning theseD-brane solutions is that there is a possible correspondence between

the gauge theory describing the dynamics of these vector �elds and the string theory

containing gravity in the bulk surrounded by the D-brane. This is an example of

an holographic theory were the physical degrees of freedom equivalently can be

described by a bulk theory or by a theory living on the boundary. In the last section

of chapter 6 a conjecture due to Maldacena is very brie
y presented which possesses

precisely these features.

In paper I we derive parts of the monopole and dyon spectra of N = 2 super{

Yang{Mills theory coupled to matter multiplets. We explicitly derive the moduli

space of the (1; 1) monopole of the SU(3) gauge theory which turns out to be a

Taub{Nut space times the original moduli space of the (1; 0) monopole. From this

paper we saw that there is no naive strong-weak duality in the general theory with

higher rank gauge groups.

In paper II we look at the �ve-brane in seven dimensions from a super-embedding

approach. Here we see that the seven-dimensional case di�er a bit from the eleven-

dimensional in that it does not put the background theory on-shell. To do this an

additional constraint on the torsion must be imposed. Through the analysis in this

paper we are also able to make a direct connection between the super-embedding

approach and the approach of non-linear realization.

In paper III we derive new p-brane solutions with additional excited world-

volume tensor �elds. The M5-brane and the D3-brane with the world-volume tensor

�eld and vector �eld respectively excited are derived. Some interesting geometrical

features of these solutions are discussed.

In paper IV the geometry of the p-brane solutions together with the theory of

�brations, Yang{Mills theory and Kaluza{Klein theory are all put on equal footing



Introduction 5

through the theory of almost product structure (APS-theory). From this perspec-

tive, the theories can be given their true geometrical and topological features.

In paper V we continue the research of paper IV by deriving all the curvature

relations involved in an arbitrary APS-theory. Furthermore are the conformal prop-

erties of these curvature components are derived.





2
The theory of almost product

structures

In 1954 Yang and Mills generalized the theory of electromagnetism when they in-

troduced the so called Yang{Mills theory. In their approach to describe the weak

interactions they introduced a SU(2) gauge �eld which is the simplest example of

a non-abelian gauge �eld. This theory has afterwards gone through a tremendous

development and is today best understood using the theory of �ber bundles where

it is characterized as a principal bundle. Here the theory is characterized with the

quadruple (M;P;G; �), where M is the base manifold, P is the total space, even

called the principal bundle itself, G is the gauge group and � is a projection map

which is a surjective submersion characterized by the exactness of the following short

sequence

0 �! G �!i P �!� M �! 0 (2.1)

This sequence can serve as the de�nition of a �bration and implies that M = P=G.

This relation can locally be inverted to say that locally P =M�G, but globally this
is not always true - one can have obstructions which in the physical language are

called magnetic monopoles or instantons depending on what character they have.

Next chapter will deal with these concepts further. Mathematically these obstruc-

tions is measured by characteristic classes. That is to say that there are characteristic

classes which are topologically invariant objects and can therefore see topological dif-

ferences between two di�erent principal bundles with same base manifold and gauge

group. To be exact it should be stressed that these characteristic classes require

the introduction of a connection by which they are characterized as polynomials

in the curvature tensor associated with this connection. They are integral classes

and thus to every principal bundle there is an associated integer, so two di�erent

integers implies that the two principal bundles are non-homeomorphic. This does

7



8 Chapter 2 The theory of almost product structures

not say though, that two principal bundles with the same integer associated with

some characteristic class, must be homeomorphic. A connection in a �ber bundle

basically means a splitting of the tangent bundle into two di�erent parts, often re-

ferred to as the horizontal and vertical parts, and one writes TP = H � V . The

connection now measures the twisting of the gauge group as one moves across the

base manifold. This can be seen as the non-integrability of the horizontal subspace.

We can generalize this further by introducing what is called an almost product struc-

ture (APS) which is a (1; 1) tensor that splits the manifold into TM = E+ � E�.

This tensor together with a compatible metric on TM gives a total description of

the geometry and topology of the manifold in question. Curvature as introduced in

�ber bundle theory will �nd its generalization in the Nijenhuis tensor of the almost

product structure in question. Paper IV and V makes a deep dissection into these

areas in which the innermost structure of this type, by which �ber bundles is just a

special case, is investigated. For the interested reader other bene�cial input is found

in Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

2.1 Basics regarding almost product manifolds

An almost product manifold is a triple (M; g; I) whereM is a manifold, g is a metric

compatible with the almost product structure I , i.e., g(X; Y ) = g(IX; IY ) with

I2 = 1l. Together with the Levi-Civita connection will the almost product structure

give a most thorough description of the geometry and topology of an almost product

manifold and therefore also of �ber bundles. There are two characteristic tensors

which are called deformation tensors of the (respective) distribution associated with

the almost product structure. There are also, beside the Levi-Civita connection,

two other covariant derivatives with the property that they commute with the APS.

All these covariant derivatives can be seen to di�er only through these deformation

tensors. These deformation tensors are (2,1) tensors with the property that two of

the indices lies in one of the distributions and the other index lies entirely in the

complementary one. One can reduce the tensors by splitting the two indices into

their anti-symmetric, symmetric and traceless and trace parts respectively. But let

us �rst get to know the concept of almost product structures a little better. The

APS makes a split of the tangent bundle in the following way

De�nition 2.1 Let I be an almost product structure on M , then I de�nes two

natural distributions of TM , denoted D and D0 respectively, in the following way.

Let

Dx := fX 2 TxM : IX = Xg
D
0
x := fX 2 TxM : IX =�Xg
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then

D :=
[
x2M

Dx; D
0 :=

[
x2M

D
0
x

Here the adaption to the conventions of paper IV should be stressed. According

to the above de�nition, the tangent bundle now splits into

TM = D�D0: (2.2)

These complementary distributions can of course be associated as the horizontal and

vertical in ordinary �bre bundle theory. Projections of vectors in the tangent bundle

onto these respective distributions can be made by introducing projection operators

through the APS. This is of course possible because the APS squares to one.

P :=
1

2
( 1l + I) (2.3)

P 0 :=
1

2
( 1l� I) (2.4)

(2.5)

As the manifold studied here is endowed with a metric compatible with the APS, this

metric is split into the parts of the two complementary distributions respectively,

i.e.

g(X; Y ) = g(X; Y ) + g0(X; Y ): (2.6)

where g(X; Y ) := g(PX;PY ) and g0(X; Y ) := g(P 0X;P 0Y ). Associated with these

complementary distributions are their respective deformation tensor which can be

said to measure the failure of the split of the tangent bundle to split the entire

manifold into a geometrically direct product. By "geometrically" it is stressed that

the presence of the metric has been taken into consideration. Should the metric

be absent one could still talk about a direct product which would be purely of

topological origin. The Nijenhuis tensor, yet to be introduced, measures this failure

and will be seen to represent the gauge �eld strength in a principal bundle. Of

course, as is notably the case for a principal bundle, nothing depends on a possible

�ber metric so it is of no interest to talk about internal geometry there. The tensor

that sees the geometrical di�erences will be the Jordan tensor and can be de�ned in

a similar but yet other way to the Nijenhuis tensor. To understand this better the

deformation tensor �rst needs to be de�ned. Only one of the deformation tensors

will be regarded but the other is analogous.

De�nition 2.2 Let D be a k-distribution with projection P on a riemannian man-

ifold M with non-degenerate metric g. Let r be the Levi{Civita connection with
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respect to this metric and let P 0 := 1l� P be the coprojection of D. Now de�ne the

following tensors with characteristics

H;L;K : �1
D � �1

D 7�! �1
D0

� : �1
D0 7�! R

and

(i) H(X; Y ) := P 0rPXPY deformation tensor;

(ii) L(X; Y ) :=
1

2
(H(X; Y )�H(Y;X)) twisting tensor;

(iii) K(X; Y ) :=
1

2
(H(X; Y ) +H(Y;X)) extrinsic curvature tensor;

(iv) ]� := trH mean curvature tensor;

(v) W (X; Y ) := K(X; Y )� 1

k
]�g(X; Y ) conformation tensor:

This gives us the decomposition of the deformation tensor in its anti-symmetric,

symmetric-traceless and trace parts accordingly,

H(X; Y ) = L(X; Y ) +W (X; Y ) +
1

k
]�g(X; Y ):

From this de�nition it is clear that the deformation tensor measures to what

extent the distribution deforms into the complementary distribution under parallel

transport. Here parallel transport is de�ned by the usual Levi{Civita connection

de�ned by

r'(X; Y ) := 1

2
(d'(X; Y ) +L]'g(X; Y )) (2.7)

In the case where no metric is present there is no unique way to introduce parallel

transport but one has to use the dragging of vector �elds instead. This is of course

nothing but the Lie derivative and by substituting the Levi{Civita connection by

the Lie derivative in the de�nition above, the usual curvature of a �bration is in fact

obtained. It also follows by the no-torsion condition of the Levi{Civita connection

that the anti-symmetric part of the deformation tensor called the twisting tensor

indeed measures this curvature.

L(X; Y ) =
1

2
P 0[PX;PY ] (2.8)

Recall the integrability condition for a distribution to be a foliation which states

that the commutator of vectors in the distribution must stay in the distribution, or

[�D;�D] = �D. This turns out to be nothing but the requirement that this twisting

tensor vanishes. The remaining part of the deformation tensor has conventionally

been called the extrinsic curvature as it in next section will be identi�ed with the
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extrinsic curvature of an embedding regarded as a leaf of a foliation. As the twisting

tensor does not depend on the metric at all, it is clear that the remaining part must

do. In fact, if one looks at the very de�nition of the Levi{Civita connection it is of

no surprise that the extrinsic curvature can be written

K(X; Y )(') =�
1

2
L]'0g(X; Y ); or

[K(X; Y; Z) =�
1

2
LZ0g(X; Y ); (2.9)

where the prime denotes projection along the normal directions by P 0. This relation
gives a most geometrical insight in what the extrinsic curvature measures. As is seen

as one moves in some complementary direction the extrinsic curvature measures the

failure of this to be an isometry of the induced metric on the distribution. So it is

clear that the extrinsic curvature sees how the manifold is geometrically deformed

as one moves in a complementary direction while the twisting tensor sees how the

complementary distribution twists as one goes around a loop in the distribution.

In the de�nition of the deformation tensor the extrinsic curvature was split further

into its irreducible parts. The reason for this is that only the mean curvature which

represents the trace part of the deformation tensor sees a conformal transformation.

If one makes a conformal transformation with cg = �g = e2�g the tensors transforms

as

cK(') = K(') + �
�1]'0[�]g = K(') + 2]'[�]g (2.10)

c�(X) = �(X) + k�
�1X 0[�] = �(X) + 2kX 0[�] (2.11)

cW = W (2.12)
cL = L (2.13)

From these relations it is clear that the conformation tensors measures geometrical

deformations which preserve the volume, while the mean curvature represents the

blow up of the manifold while moving in a complementary direction. From the theory

of embeddings it is of no surprise that a distribution with vanishing mean curvature

tensor will be called minimal as this is the condition which minimizes the volume

functional of the induced metric. A simple but yet very instructive calculation shows

the origin of this condition from the action functional, namely

�

Z
dkx

p
g =

Z
dkx

p
ggmn�gmn (2.14)

Now generating a special variation by a normal vector �X 0gmn = (LX 0g)mn =
[Kmn(X

0) which by the vanishing of the variation gives �(X 0) = 0; 8X 0 2 �1
D0

and

it is clear that a minimal distribution requires the vanishing of the mean curvature

tensor. This volume functional is nothing but the action describing the dynamics

of a p-brane in various supergravity theories, which will be discussed in chapter 6.

So by the irreducible parts of the deformation tensor one extracts eight di�erent

situations.
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Figure 2.1: Overview of the di�erent classes of a distribution

De�nition 2.3 Let D be a distribution on a riemannian manifold M we have the

following 8 di�erent classes

Name L = 0 W = 0 � = 0 Notation

Distribution D

Minimal Distribution x MD

Umbilic Distribution x UD

Geodesic Distribution x x GD

Foliation x F

Minimal Foliation x x MF

Umbilic Foliation x x UF

Geodesic Foliation x x x GF

If one takes into account the second deformation tensor associated with the

complementary distribution and observe that as the APS is symmetric in the sense

that changing I to �I still gives the same splitting although now with positive and

negative eigenspaces interchanged, one gets a total of 36 = 1
28(8+1) di�erent classes.

Proposition 2.4 Let the triplet (M ; g; I) be an riemannian almost product struc-
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ture. We then have the following 36 di�erent classes

Classes L W � L0 W 0 �0 Name

(GF,GF) x x x x x x Local product

(GF,UF) x x x x x Twisted product

(GF,MF) x x x x x

(GF,F) x x x x

(UF,UF) x x x x Double twisted product

(UF,MF) x x x x

(UF,F) x x x

(MF,MF) x x x x

(MF,F) x x x

(F,F) x x

(GF,GD) x x x x x Riemannian foliation

(UF,GD) x x x x Riemannian foliation

(MF,GD) x x x x Riemannian foliation

(F,GD) x x x Riemannian foliation

(GF,UD) x x x x

(UF,UD) x x x

(MF,UD) x x x

(F,UD) x x

(GF,MD) x x x x

(UF,MD) x x x

(MF,MD) x x x

(F,MD) x x

(GF,D) x x x

(UF,D) x x

(MF,D) x x

(F,D) x

(GD,GD) x x x x

(GD,UD) x x x

(GD,MD) x x x

(GD,D) x x

(UD,UD) x x

(UD,MD) x x

(UD,D) x

(MD,MD) x x

(MD,D) x

(D,D)

Here the ordinary case of a principal bundle is simply (GF;GD) where the non-

integrable distributions is the tangentbundle of the base manifold. This case can be

seen as having one base manifold and one �ber manifold and starting to twist the

�ber as we move along directions on the base manifold. This twisting imposes a non-

integrability to the base manifold itself. In �ber bundle theory one asks how many
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topologically di�erent total spaces can be made starting from one base manifold

and one �ber. From the above analysis it is clear that, although in the classi�cation

we did not distinguish the class (GF;GD) from (GD;GF ), there is an asymmetry

whether one twists the �ber above the base manifold or \twists the base manifold

over the �ber". This gives yet another possibility of topological obstructions due to

the twisting of the Minkowski part of the total space (previously the base manifold)

over the complementary space (previously the �ber). These obstructions would have

no counterpart in existing physics where we thought of them as monopoles or in-

stantons. Nevertheless they must exist as a matter of symmetry of the classi�cation

and the ignorance of the Einstein equations to distinguish between these cases so

from above analysis one might conjecture their existence. The physical interpreta-

tion will be left to the person who gives us the �rst solution of that kind. It should

also be stressed that although given an almost product manifold (M; g; I) with given

metric and given APS it will of course �t into one of these classes but when study-

ing manifolds one might ask whether the manifold itself admits a metric in some of

these classes given an APS. One might also ask what kinds of APS there is on a

manifold. As the APS squares to one it is obvious that it only have eigenvalues �1
and trI = 2k�m where k is the dimension of the positive eigenspace (distribution)

and k0 = m� k is the dimension of the negative eigenspace (complementary distri-

bution). The �rst question to ask is therefore whether the manifold admits an APS

with given k. The easiest example of possible obstructions is the case k = 1 which

in minkowskian physics would refer to a point particle. This question can easily

be answered because the condition for globally de�ned distribution of dimension

one, which always is integrable, is the same as the existence of a global vector�eld.

Now the existence of a global vector�eld is equivalent to the condition that the

euler number of the manifold is zero. This is also the condition for the existence

of a codimension one foliation and the condition for the existence of a metric with

minkowskian signature. This tells us for example that there always exist an APS

with k = 1 on a minkowskian manifold and the existence of an integrable comple-

mentary distribution gives us the possibility to do the classical ADM decomposition

when doing canonical gravity.

In the previous analysis the APS gave us two distinct eigenspaces to which we

associated two di�erent deformation tensors, but the analysis did not make explicit

use of the APS itself. So here will be given a brie�ng about how one can approach

all distinct tensors from the APS itself. For a complete analysis of how one deals

with 1-1 tensors algebraically see paper IV. As is well known, the exterior algebra of

contravariant �elds deals with commutators of vector�elds while the exterior algebra

of forms deals with the exterior derivative. Now to a given 1-1 tensor there is

associated what is called an I-bracket where I stands for the 1-1 tensor at hand, in

our case of course an APS. This is de�ned by

[X; Y ]I := [IX; Y ] + [X; IY ]� I [X; Y ] (2.15)
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and can be seen to be anti-symmetric and to reduce to the ordinary bracket for the

identity, 1l. One can de�ne the Nijenhuis tensor as the failure of this I-bracket to be

a Lie bracket, but there is yet another, more common approach to the de�nition of

the Nijenhuis tensor, namely from the exterior derivative of forms. Here one instead

de�nes dI := [d; iI] as a generalized Lie derivative and then de�nes the Nijenhuis

tensor as the failure of this new operator to be a co-boundary operator. That is

the failure of this operator to be nilpotent, so the more common Nijenhuis tensor

reads < �NI(X; Y ); df >:= dIdIf(X; Y ). The sign which actually is non-standard

is convenient for the comparison with algebraic gauge theory and as it turns out

when taken into account the two new covariant derivatives associated with an APS

the Nijenhuis tensor can be identi�ed with the torsion or parts of it for those non-

Levi-Civita covariant derivatives. By the de�nition of the I-bracket the Nijenhuis

tensor can be written in its most pleasant form.

NI [X; Y ] := I([X; Y ]I)� [I(X); I(Y )]; (2.16)

From this relation one can regard the Nijenhuis tensor as a measure of to what

extent the endomorphism, I , fails to be a Lie algebra homomorphism of the in�nite

dimensional Lie algebra of vector�elds on the manifold. In algebraic gauge theory

we have a principal bundle 0! A! E ! B ! 0 and a connection � : B ! E with

curvature

F (X; Y ) := �([X; Y ]jB)� [�(X); �(Y )]jE: (2.17)

Here the curvature measures the failure of the connection � to be a Lie algebra

homomorphism as a map from the base algebra B to the total algebra E. In the

case with the endomorphism I the map is from the total space into the total space.

By a simple example one can show that one can lift the concept of curvature of

the algebraic gauge theory entirely into the total space itself. The connection on B

denoted � is map such that

� : B 7�! E; � � � = 1lB : (2.18)

But we could equivalently look at a connection in the total space, E, instead and

denote it by ! where it instead satis�es

! : E 7�! A; ! � i = 1lA: (2.19)

There is an immediate relation between the two connections given by

! = 1E � � � � (2.20)

satisfying the idempotency condition !2 = ! of a projection operator which is the

key connection to the APS structure. The curvature of these two connections are

de�ned for X; Y 2 �1
B and X; Y 2 �1

E by

F (X; Y ) := �([X; Y ])� [�(X); �(Y )]; (2.21)


(X; Y ) := F (�X; �Y ): (2.22)



16 Chapter 2 The theory of almost product structures

Introducing a co-projection operator !0 = 1lE � ! = � � � we can now fully extend

this theory to the APS case by introducing I = ! � !0 = 1E � 2� � � and with the

curvature 
 reducing to the Nijenhuis tensor of this APS,


(X; Y ) =
1

4
NI(X; Y ) (2.23)

which follows directly when expressing 
 in terms of !, see [12]. So in conclusion

we notice the naturality of the Nijenhuis tensor as a measure of twisting in �ber

bundles and likewise in the generalization to almost product manifolds. In principal

bundle theory we know from the Ambrose-Singer theorem that the curvature lies in

the Lie algebra of the holonomy group of the principal bundle. This holonomy group

is by elementary group theory forced to be a subgroup of the gauge group of the

theory, generically the entire gauge group itself. In the case of an almost product

manifold it is not that easy because the existence of an APS on a manifold does

not imply that it can be seen as two locally product manifolds twisting around each

other. Although in the (GF;GD) case, when we have this situation and locally the

manifold looks like M =M �M 0, the Nijenhuis tensor lies in the Lie algebra of the

holonomy group which now is a subgroup of the di�eomorphism group Diff(M 0)

with Lie algebra the set of vector�elds onM 0. In the case of a doubly non-integrable

almost product manifold for instance (GD;GD), where the manifold again can be

interpreted as a double twisting of M and M 0 around each other, the Nijenhuis

tensor will have two non-vanishing parts which are nothing but the two twisting

tensors of the respective distribution, i.e.

1

8
NI = �L� L0 (2.24)

This relation tells us that the Nijenhuis tensor indeed measures the twisting of the

two complementary distributions associated with the APS. It is also clear from the

de�nition that the Nijenhuis tensor is independent of a particular metric on the

manifold in question, so to wrap up the anti-symmetric part of the deformation

tensor is metric independent and can be seen to be measured by the Nijenhuis

tensor.

In physical theories including gravity we are endowed with a metric, and in

particular in Kaluza{Klein theories where gauge theory is looked upon from a total

space point of view. It is therefore of utmost importance to study not only twistings

which are done by the Nijenhuis tensor but also geometrical di�erences which are

connected to the symmetric part of the deformation tensor as seen before. This

study can too be done through the APS directly. So if we start by de�ning the

Jordan bracket by

fX; Y g := rXY +rYX (2.25)

and in a similar fashion as with the I-bracket de�ne the I-Jordan bracket

fX; Y gI := fIX; Y g+ fX; IY g � IfX; Y g: (2.26)
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we can de�ne a new tensor, called the Jordan tensor, in exactly the same way as we

did with the Nijenhuis tensor earlier, namely

MI(X; Y ) := IfX; Y gI � fIX; IY g (2.27)

Again it should be pointed out that when choosing I = 1l the I-Jordan bracket

reduces to the ordinary Jordan bracket as was the case for the I-bracket and at

the same time the Jordan tensor vanishes which of course also is the case for the

Nijenhuis tensor. So as there is such a great similarity to the Nijenhuis tensor case

it would come with no surprise when one calculates the Jordan tensor in terms of

the extrinsic curvatures and �nds out that one has

1

8
MI = �K �K0 (2.28)

So one realizes that as the non-integrable twisting behavior which was non-metric

dependent was measured by the Nijenhuis tensor the geometrical deformations which

solidly depends on the metric is measured by the Jordan tensor in the APS language.

One can of course put this together into a total deformation tensor given entirely in

the APS language as

HI(X; Y ) := NI(X; Y ) +MI(X; Y ) (2.29)

Interesting to note here is that this can serve as a de�nition of the deformation tensor

of an arbitrary endomorphism I and not only APS. For instance every studied object

in almost product manifolds has its counterpart in the complex case where one have

an almost complex structure which squares to minus one instead of one. All these

tensors look completely the same when expressed in terms of the endomorphism

I but the interpretation in terms of some extrinsic curvature tensors and twisting

tensors might have to be reinterpreted.

As previously mentioned, there are two other covariant derivatives beside the

Levi-Civita connection which are of severe interest in almost product manifolds and

consequently in Kaluza-Klein theory and gauge theory. These are the only two

other connections with a natural geometrical origin that commute with the almost

product structure. Before making the precise de�nitions in terms of the APS it is

most instructive to start by taking a look at the Levi-Civita connection expressed

in the oriented frame. The oriented frame is de�ned by imposing ortho-normality

to the basis vectors which bring them down to vielbeins and a SO(m) degree of

arbitrariness and then forcing them to be eigenvectors of the APS which breaks

the SO(m) arbitrariness down to SO(k)� SO(k0). So if we denote E�a = (Ea; Ea0)

the ortho-normal eigenvectors of I , i.e., IEa = Ea; IEa0 = �Ea0 , and denote the

connection 1-form with respect to this basis conventionally by !, we have from

the de�nition of the Levi-Civita connection r�aE�b =: !�a�b
�cE�c. Recall the de�nition

of the deformation tensor which in this oriented basis take a most pleasant form

Hab
c0 := P 0raEb = !ab

c0Ec0 where for the �rst time the true index structure of
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deformation tensor is explicitly revealed. If one in addition denotes the normal

connections by 
, i.e., !ab0
c0 =: 
ab0

c0 , the Levi-Civita connection can be written

! =

��
! H

�H t 


�
;

�

0 H 0

�H 0t !0

��
(2.30)

where the index structure !�a�b
�c = [a()�b

�c;a0 ()�b
�c] is understood. From this expression it

is more transparent what was already clear from the very de�nition of the deforma-

tion tensors, that the deformation tensors are o�-diagonal parts of the Levi-Civita

connection. Now it is also clear that the Levi-Civita connection does not commute

with the APS unless both these deformation tensors are zero. It is also clear from

connection analysis that if one introduces yet another connection just by subtracting

the deformation tensor parts one ends up with a new connection which, although not

Levi-Civita, must commute with the APS because it evidently preserves the rigging.

This is also the �rst of the two new connection which were promised earlier and

it is dubbed the adapted connection due to its adaption to the rigging associated

with an APS. In the next section the analogy with the induced and normal con-

nections of an embedding will be seen, where one compares them with the adapted

connection through the Gauss-Weingarten equations. Before de�ning the adapted

connection axiomatically through the almost product structure it must be stressed

that adding a tensor to a connection does of course alter some of its structure. When

compared to the Levi-Civita connection one can pay the price of torsion or the price

of non-metricity. As is actually clear from the above structure of the Levi-Civita

connection one can not alter the metric compatibility of the connection by removing

the o� diagonal terms so we can, without doing the explicit calculation, tell that

the adapted connection is metric compatible but must have a non-vanishing torsion.

This torsion will evidently also be zero in the case when the deformation tensors

both are zero. Put in the words of APS the following de�nition arises.

De�nition 2.5 Let M be a riemannian or pseudo-riemannian manifold with non-

degenerate metric g and corresponding Levi{Civita connection r. Let I be an almost

product structure, then the following two de�nitions of the adapted connection are

equivalent

(i). ~rXY := rXY + A(X; Y ); A(X; Y ) := 1
2IrXI(Y )

(ii). ~rXY := PrXPY + P 0rXP 0Y

Working out the component expression of the tensor A one ends up exactly in

the form anticipated in the above analysis.

A�a�b
�c =

��
0 �Hab

c0

�Hab0
c 0

�
;

�
0 �H 0

a0b0
c

�H 0
a0b

c0 0

��
(2.31)
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This leaves us with a connection form for the adapted connection denoted by ~! in

the oriented basis looking like

~! =

��
! 0

0 


�
;

�

0 0

0 !0

��
(2.32)

Due to the absence of the o�-diagonal parts this connection was seen to commute

with the almost product structure, and as was noted before it was also metric com-

patible. Put together this implies that the adapted connection is metric with respect

to the induced metrics on the the two subbundles de�ned by the almost product

structure, i.e. put together the adapted connection satis�es

~rg = 0

~rI = 0

~rg = 0

~rg0 = 0

It is the property that adapted connection is metric compatible not only with the

total metric but also with the induced metrics that makes it so useful while studying

a rigging like the one de�ned by the APS. The price we had to pay was that this

connection was not torsion-free but depended on the deformation tensors. Previously

it was mentioned that there was some sort of connection between the torsion and the

Nijenhuis tensor. The connection in terms of the torsion of the adapted connection

is

1

2
NI(X; Y ) = ~T (X; Y ) + ~T (IX; IY ) (2.33)

Although there obviously is a connection it is not in that pleasant form one most

would like. As is obvious from the de�nition of the torsion tensor in terms of Cartan's

structure equation dEa + !b
aEb = T a and Frobenius theory of integrability, the

torsion could in some sense be regarded as a measure of the non-integrability of the

vielbeins. If one considers the complete set of vielbeins of the total manifold these

are by de�nition integrable and the torsion tensor of a connection is in that case only

a measure of a "badly chosen connection". (There are of course situations where

it even in this case is preferable to choose a connection with torsion instead of the

Levi-Civita connection). In the case with an APS present it is rather di�erent, here

the split of the vielbeins into the oriented base associated with the APS forces one to

split the Cartan's structure equations into two di�erent parts. These parts can then

be seen as a measure of the non-integrability of the respective distributions spanned

by their associated vielbeins. Just by looking at Cartan's structure equation it is

obvious that just by moving the o�-diagonal parts of the Levi-Civita connection to

the right and identifying them as the torsion of the new diagonal connection. This

is actually precisely the adapted connection that is received this way, but by of both

Frobenius integrability condition and the Cartan's structure equation it would be
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pleasant to �nd another connection where the torsion exactly measures the non-

integrability of respective distributions locally spanned by the oriented vielbeins.

This is indeed possible and the connection known as the Vidal connection is de�ned

in terms of the APS as follows.

De�nition 2.6 Let M be a riemannian or pseudo-riemannian manifold with non-

degenerate metric g and corresponding Levi{Civita connection r, let I de�ne a

foliation in the previous sense, then the Vidal connection is de�ned by

~~rXY := ~rXY + B(X; Y ); B(X; Y ) :=
1

4
(rIY I + IrY I)(X)

It is of course obvious that as the tensors A was given in terms of the deformation

tensors, so must be the case with this new tensor B. In fact they can be proved to

be related.

B(X; Y ) =
1

2
(A(Y;X)�A(IY; IX)) : (2.34)

The shifting of the vector�elds in the respective tensors in the above equation stresses

the change in the matrix structure of the tensor B compared to A. In the earlier

introduced matrix form the tensor B reads

B�a�b
�c =

��
0 0

0 �H 0
b0a

c0

�
;

� �Hba0
c 0

0 0

��
(2.35)

The new structure of the Vidal connection that makes its torsion depend only on

the Nijenhuis tensor is based solidly on the fact that the structure constants with

index form Cab0
c0 and Ca0b

c transform as connections under local SO(k) � SO(k0)

transformations. By the torsion equation of the Levi-Civita connection taken for the

above index structures on gets 0 = !ab0
c0 � !b0ac0 � Cab0

c0 ) 
ab0
c0 �H 0

b0a
c0 = Cab0

c0 .

So in matrix form in the oriented frame the Vidal connection form reads

~~! =

��
! 0

0 C

�
;

�
C0 0

0 !0

��
(2.36)

The diagonal structure of this connection ensures the feature that it commutes with

the almost product structure, i.e.,

~~rXI = 0 (2.37)

As was discussed earlier this construction made it possible for the torsion of the Vidal

connection only to measure the non-integrability of the respective distributions. It

is therefore clear that the torsion can be written

1

4
NI(X; Y ) =

~~T(X; Y ) (2.38)

Now it is time to make some honest confessions regarding the Vidal connection.

As was clear when studying the adapted connection the price we had to pay for
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it to commute with the APS was that it picked up torsion components. Here in

the Vidal connection we have completely hidden the structure of the deformation

tensors appearing in the Levi-Civita connection. The price to be paid was of course

a torsion tensor but this torsion only have components equal to the Nijenhuis tensor

which measure the non-integrability but no components related to the other parts

of the deformation tensor. So to restore the information contained in these parts

there is merely only one other place to look namely in the metricity condition. The

Vidal connection will turn out to be non-metric compatible in the case when any

of the extrinsic curvature parts is di�erent from zero. In fact the following relation

holds

1

8
g(X;MI(Y; Z)) = (

~~rXg)(Y; Z) (2.39)

So put together the Vidal connection have one non-metricity part directly connected

to Jordan tensor and one torsion part directly connected to the Nijenhuis tensor.

2.2 Comparison with embeddings

When comparing embeddings and almost product structures in a manifold, the very

�rst distinction between these is that an embedding have lower dimension and will

just be a very tiny subset of the points of the target space. The source manifold

will throughout this thesis be denoted world-sheet no matter what the dimension

it has and all manifolds treated are supposed to be equipped with a metric. Take

into account an arbitrary embedding of a manifold (M ; h) with dimension k into

another manifold (M ; g) with dimension m and introduce local coordinates xm and

xm respectively1. The tangent spaces TM (TM ) will be spanned by the coordinate

basis @m (@m). The tangent space of TM embedded in TM will be spanned by the

vectors f�@m. Here a basic distinction between almost product structures is that

this hypersurface associated with an embedding must indeed be integrable while

the APS restricted to the same hypersurface need not. In a non-coordinate basis

chosen to be an orthonormal basis, so called vielbeins Ea can be introduced in target

space. These are determined up to a local O(m) transformation. As the f�@m will

span a k dimensional vector subspace of TxM , it is always possible to introduce

a new frame of orthonormal basis vectors in such a way that Ea will point in the

tangent directions of the embedding and Ea0 will point in the normal directions of

the embedded surface. The normal directions are those metrically orthogonal to the

E0
as. These basis vectors are decided up to local O(m) and O(m � m) rotations

respectively. The quotient of this is the well known grassmanian

Gr(k;m) =
O(m)

O(k)� O(m� k)
(2.40)

1So far the signature of the manifolds are of no importance, so one can see the dimensions as

m = (p;m� p) and m = (p;m� p).
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of k-planes in m dimensions. Just for convenience we will denote the normal dimen-

sion by k0 :=m�k. This can be compared to the structure of an APS. Here one can
�nd orthonormal basis vectors which are the so called oriented frame which are pos-

itive and negative eigenvalues of the APS respectively, i.e. IEa = Ea; IEa0 = �Ea0 .

One can equally say that the APS, I , breaks the structure group O(m) of TM down

to O(k)�O(k0) where k0 := m�k. In that sense the set of almost product structures
with k positive eigenvalues is parameterized by the grassmannian,

I 2 Gr(k;m) = O(m)

O(k)�O(k0) (2.41)

with the basic di�erence that this structure is now globally de�ned throughout the

entire manifold and not restricted to the subset of points associated to a embedded

manifold. The grassmannian has kk0 = k(m � k) independent components and

parameterizes the space of k-planes in R
m. The almost product structure thus

de�nes two complementary distributions by taking these complementary hyperplanes

spanned by the eigenfunctions with positive eigenvalues and by the eigenfunctions

with negative eigenvalues respectively. Put together these basis vectors form a total

basis for TM we get

E�a := (Ea; Ea0) (2.42)

and the extension of the local transformations by O(m) and O(n) will look like

O(m)!
�
O(m) 0

0 1ln

�
O(n)!

�
1lm 0

0 O(n)

�
(2.43)

In the case of an embedding though this splitting is only associated to a subset of

the tangent space containing the points of the embedded manifold, which can be

written TM jM . The dual vielbeins can be introduced by the relation

E�a(E�b) = ��b
�a (2.44)

and the canonical 1-form can be seen to be split into its tangential and normal parts

� = P + P 0� EaEa + Ea0Ea0 : (2.45)

In this basis the almost product structure looks like

I = P � P 0 (2.46)

The induced canonical 1-forms of the respective complementary distribution now

serves as projector operators, i.e.

Xk = P(X)

X? = P 0(X)
(2.47)
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From (2.45) it is obvious that the canonical splitting is invariant under the group

O(m) � O(n) which states that the embedding or the APS is independent of the

choice of frame in the two complementary distributions. The embedding/APS is

only changed through the grassmanian part of O(m), i.e. Gr(k;m). This can be

seen by expressing the oriented vielbeins in another arbitrary vielbein base, i.e.

Ea = Ea
bEb

Ea0 = Ea0
bEb

(2.48)

In the composite index form this can be written as

E�a = E�a
bEb = u�a

bEb (2.49)

where u�a
b 2 O(m). A general embedding/APS which are parameterized by the

grassmanian can be seen through this matrix as

u�a
b =

 
( 1lk �m2)

1=2

a
cuc

b ma
b0

�ua0b0mb0
cuc

b ua0
c0( 1lk0 �m2)

1=2

c0
b0

!
(2.50)

where ma
b0 spans the grassmanian Gr(k;m). From this relation it is obvious that

the orthogonal group does not split into direct products but that the grassmanian

part lies nestled in the orthogonal group. The Lie algebra of the orthogonal group

will though split up into direct sums of algebras. The metric on M also splits into

two parts

g = g + g0 = EaEb�ab + Ea0Eb0�a0b0 (2.51)

where g is the intrinsic metric of the embedding or the induced metric of one of the

complementary distributions associated with the APS. When studying the intrinsic

geometry of an embedding there are two ways to proceed. The �rst is to do the

analogue of the APS and treat it as a subbundle to the tangent bundle of target

space. The other possibility is to pull back the metric in target space down to the

world-sheet and look at the geometry there. This pullback is of course not possible

to do in the case of a pure APS as there is no embedded manifold to pull it back

to. The major drawback in this procedure is that all information about the normal

bundle is lost during the process. The pullback equations simply looks like

f�g = f�g =: g

f�Ea =: Ea

f�g0 = 0

f�Ea0 = 0

(2.52)

In the study of embeddings in physics this procedure is nevertheless followed and

it is often useful to introduce an auxiliary metric on the world-sheet too. Although

the di�erences between almost product structures and embeddings so far has merely
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been the restricted location of the embedded surface it must be stressed that almost

product structures is not always a generalization of embeddings as it was for gauge

theories for example. An embedding is always integrable and its generalization

would perhaps be a foliation of the manifold with leaves of the topology of the

embedded manifold. This is not always possible as is seen with the simplest case

of an embedding of a circle into the plane. If one tries to extend that embedding

to a foliation, a singular point arises somewhere when the size of the circle shrinks

to zero. If this singular point is removed, though, the extension exists. So in the

general case there exist always an extension if one removes some singular points or

hypersurfaces.

The di�erential geometry of embeddings is further studied through the Gauss{

Weingarten relations which is a similar split of the Levi{Civita connection as was the

case for an APS. Letting tangent vectors be unprimed and normal vectors primed

the Gauss{Weingarten relations can be written

rXY = rXY +K(X; Y )

rXY
0 = r0

XY
0 � tK(X; Y 0)

Here r is a connection on M compatible with the induced metric g and K is the

second fundamental form also known as the extrinsic curvature. For more details

see Kobayashi and Nomizu [13]. For a generalization to a non-symmetric connection

incorporating torsion see paper II. The connection in TM lies in the Lie Algebra

o(m), but the Gauss-Weingarten equations state the following splitting

o(m) = o(k)� o(k0)� gr(k;m) (2.53)

where gr(k;m) is the Lie Algebra of the Grassmannian Gr(k;m). This splitting is

most transparently seen in the basis of the oriented vielbeins.

rcE�a = 
c�a
�bE�b =

�
!ca

b Kca
b0

Kca0
b 
ca0

b0

��
Eb

Eb0

�
(2.54)

This split implies that !ca
b 2 o(k);
ca0

b0 2 o(k0); Kca
b0 2 gr(k;m). In comparison

with an APS the embedding must be integrable so the second fundamental form

is symmetric. Otherwise it has the same structure as the deformation tensor of

an APS. As the normal directions moves out of the embedded surface there is no

such associated connection to an embedding. So the second deformation tensor

associated with the normal directions is not present here. As the normal directions

of course exists in target space one could nevertheless treat those there by doing

an APS like splitting restricted to the embedded surface. The geometry in terms

of the curvature for an APS which is a natural extension to the embedding case is

most thoroughly studied in paper V. Here the comparison is made by identifying

the diagonal connection of an embedding, sloppily denoted ~r := r +r0, with the

adapted connection of an APS. The diagonal connection is of course the part of the

Levi{Civita connection lying in the Lie algebra o(m)� o(n).
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2.3 Comparison with Yang{Mills and Kaluza{Klein theory

The di�erences between Yang{Mills theory and Kaluza{Klein theory can most easily

be seen through the APS theory. Because of the pure geometrical nature of APS

theory and the true geometrical origin of Yang{Mills and Kaluza{Klein theory both

these theories will be nothing but special cases of the more general APS theory. In

light of this the true geometrical di�erences between Yang{Mills theory and Kaluza{

Klein theory can be exploited. Here will be purely focused on the bosonic theory

in which Kaluza{Klein theory originates from higher-dimensional Einstein gravity

described by the action

S =

Z q
jgjR (2.55)

In paper V the most general split of this curvature scalar through an APS was de-

rived. As is no surprise from earlier discussions the �eld content of this split is,

beside the two internal curvatures of the complementary distributions, the deforma-

tion tensors. Put into their irreducible forms the action reads

S =

Z p
g
p
g0
�
~~R+

~~R0 +
1� k

k
�2 +

1� k0

k0
�0
2 � 2r � �I +W 2 +W 02 + L2 + L0

2

�
(2.56)

Although this has generally nothing to do with strings this will be referred to as the

string frame. One could incorporate the Einstein frame in which the dimensionally

reduced curvature term would simply be the Einstein term, i.e.
q
jgjR ! pjgj~~R.

To obtain this one has to make a conformal transformation of the metric, but for the

purpose of studying the geometry of the theory the string frame is the more natural

to choose. As is seen from the above action, beside the deformation tensor parts

there is also a total derivative which will come into play when studying manifolds

with boundary. To identify the di�erent theories through the APS theory, one �rst

notices, that from paper IV, the twisting tensor is simply L = 1
2F , where F is the

gauge �eld strength. Ordinary gauge theory is found to be of the type (GF;GD)

and thus by taking all �elds but L to zero the action reduces to

S =

Z p
g
p
g0
�
~~R+

~~R0 + L2
�

(2.57)

Taking the base manifold to be ordinary Minkowski space and dropping the constant

normal curvature term plus rewriting the action into the Einstein frame this can be

written

S =

Z p
g
1

4g2
F 2 (2.58)

By this scheme the coupling constant is identi�ed with some power of the internal

radius of the gauge group, i.e. g = R� where � is some constant. The main di�erence
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of Kaluza{Klein theory in comparison with ordinary gauge theory is that this radius

often parameterized with the dilaton �eld is taken to be a dynamical object. Here

the �0
2
term contains the dynamics of the dilaton and the structure will basically

be (UF;GD). In order to keep all scalar degrees of freedom upon compacti�cation

one would end up with a (F;GD) structure. The total action describing this reads

S =

Z p
g
p
g0
�
~~R+

~~R0 +
1� k0

k0
�0
2 � 2r � �0 +W 02 + L2

�
(2.59)

Here the conformation tensor consists of the other scalar degrees of freedom which

not serves as overall conformal factors but which instead represents some internal

volume preserving deformations. As is clear from the above analysis the general

case looks a lot richer, but by only calculating the degrees of freedom it looks like

as the Kaluza{Klein ansatz would contain all possible information. This is not true,

though, as was discussed when conjecturing new topological non-trivial solutions

with non-vanishing normal twisting. Locally the metric can be put into such form

that the Kaluza{Klein ansatz looks general. The � and W �elds would here only

represent higher modes in mass parameters associated with the normal coordinates.

A more interesting thing noticed through the above analysis is that all these theories

are found in a bigger theory with only one dynamical �eld, the metric. Dimensionally

this implies that that there are only two measurable quantities namely length and

time. Time is of course implicit in the metric structure of the locally minkowski

space. This on the other hand implies that there are only two natural physical

constants and not three as is usually referred to. These are of course the Planck

length and the speed of light. What is striking here is that it is the gravitational

coupling constant that is super
uous and can be included in the other �elds. The

planck constant is replaced with the planck length through the normal relation. All

electric an magnetic charges will all have the dimension of length to some power and

the Dirac quantization conditions will be purely geometrical. Interesting to note is

that charged spin 1=2 particles in four dimensions obey the quantization condition

qeqm

4�
=

1

2
l2p (2.60)

In these geometrical units mass will be of dimension length and the reciprocal length

usually associated with the mass is simply m=l2p.

Duality conjectures including the interchange of the coupling constant with its

inverse, i.e. g ! 1
g
, will in this geometrical picture be identi�ed with geometries

preserving the structure when transforming R ! 1
R

for some internal degree of

freedom. So geometrically S-duality and T-duality looks pretty much the same with

the winding of the string replaced by the winding of some internal U(1). This will

be looked upon in the sequel.
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Solitons

The �rst notion of solitons was due to the Scottish engineer John Scott Russell

(1808-1882) when he in 1834 discovered the "solitary wave". What he saw was a

di�erent type of water wave appearing in the domain of a canal. It was a wave that

did not dissipate but remained in size and shape as it wandered down the stream.

Although J.S. Russell never succeeded in proving that these solitons actually were a

class of solutions to the hydro-dynamical equations of motion, he never doubted its

existence. It was not until after his death in 1895 that Korteweg and de Vries should

give a complete analytical explanation, known as the soliton solution to the nonlinear

hydrodynamical equation, known as the Korteweg{de Vries equation. These types

of solutions only arise in certain classes of non-linear di�erential equations, of which

some examples will be given in this chapter as they appear widely in interacting

�eld theory.

Field theory can in general be divided into a non-interacting and an interacting

part. The non-interacting part contains the kinetic term and is alone called a free

�eld theory. The interacting part is usually equipped with some coupling constant

whose value determines the strength of the interaction. Conventionally the coupling

constant is chosen such that as if it is set to zero the interaction vanishes. In

quantum �eld theory one usually regards the coupling constant as small and solves

the equations of motions for the free �eld theory with oscillators interpreted as

creation and annihilation operators, and does perturbation theory in terms of this

small coupling constant. These terms are interpreted with Feynman diagrams as

some sequence of particle creations and annihilations coupled to the otherwise free

propagating particle. Now what makes solitons extra interesting is that they are

complete solutions to the non-linear equations of motions and, as it turns out, their

mass is inversely proportional to some power of the coupling constant. The direct

conclusion made from this is that they are not seen in conventional quantum �eld

theory. We say that they lie in the non-perturbative spectrum of the theory. Before

27
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giving some examples it would be interesting to state all typical characteristics of

soliton solutions to non-linear �eld theory.

� Solitons are localized classical solutions to a non-linear �eld theory which are

�nite in energy.

� Solitons are non-perturbative in the sense that their mass is inversely propor-

tional to some power of a dimensionless coupling constant.

� Solitons are stable solutions which are characterized by a topological charge

rather than a Noether charge.

� Solitons can be regarded as an interpolation between topologically inequivalent

vacua.

� Solitons are classical solutions that depend on a �nite number of parameters

which are called moduli. These parameters can be seen as coordinates on the

moduli space which di�ers for di�erent topological charge.

Interesting to note is that although the soliton is localized in space, it is not a point-

like object but rather a "lump" of energy. The reason for the existence of solitonic

objects can be traced down to a non-trivial vacuum structure associated with the

spontaneous breaking of some internal symmetry of the �eld theory in question. The

solutions can be put into di�erent topological sectors characterized by the winding

of a mapping from the boundary of the space to the vacuum manifold. We will

give three similar examples of this all characterized by the Higg's mechanism. This

mechanism is basically built upon a gauge valued scalar �eld with a potential term

which goes as the 4:th power in the Higgs �eld. The reason for this is of course to give

us the non-degenerate vacuum necessary for the spontaneous symmetry breaking.

It should be stressed that the ordinary index conventions used in this thesis will be

sidestepped in this chapter for convenience.

3.1 1+1 Domain walls

Let us start with 1+1-dimensinal �4-theory, described by the action

S[�] =

Z
d2x

�
�1
2
@��@

��� �

4
(�2 � �20)

2

�
; (3.1)

where �20 = m2=� is constant. This theory has a O(1) =Z2 symmetry by re
ection,

i.e. �! �� which implies that there are two di�erent vacuum solutions, namely

� = ��0: (3.2)

We say that the vacuum manifold, V , is two-fold degenerate, i.e. V �= Z2. In

quantum �eld theory one chooses one speci�c vacuum around which perturbations
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are done. The perturbative spectrum of this two-dimensional theory consists of

meson excitations of mass m which then describe 
uctuations around any of these

vacua. But there is also the non-perturbative excitation in term of the soliton

solution which is an interpolation between these two inequivalent vacua, i.e. with

the property

�(x)!
(
�0 x!1;
��0 x! �1: (3.3)

But forcing the soliton to interpolate between two vacua costs energy so the soliton

acquires mass. A trick due to Bogomol'nyi gives us the possibility of rewriting the

energy-density of a static solution, E , in the form

E =
1

2

 
d�

dx
+

r
�

2
(�2 � �20)

!2

�
r
�

2

d

dx

�
�3

3
� �20�

�
: (3.4)

As is seen the last term is a total derivative so it is a boundary term which is nothing

but a multiple of the topological charge associated with this soliton solution. By

�rst introducing a dimensionless coupling constant g2 := �=m2 and the topological

current

J� =
1

2�0
���@��; (3.5)

which is automatically conserved, i.e., @�J
� = 0, without the use of equations of

motion. The topological charge associated with this current is

Q =

Z +1

�1

J0dx =
1

2�0
(�(+1)� �(�1)) =

8><
>:
1 Kink;

0 Vaccum;

�1 Anti-Kink:

(3.6)

The 'Kink' solution is the one associated with the boundary conditions given in

eq. 3.3. All these solutions are of course stable since the topological charge, Q, is

a constant of motion. Now equation 3.4 gives a lower bound for the mass of the

soliton known as the Bogomol'nyi bound.

M � 2
p
2

3

m

g2
j Q j : (3.7)

When this bound is saturated the soliton is called a BPS-state. BPS-states have

more remarkable e�ects when studying supersymmetric �eld theories as they corre-

spond to di�erent representations, known as short multiplets, contrary to non-BPS

con�gurations. In this simple case one can �nd the solution which saturates the

Bogomol'nyi bound by minimizing the energy given in eq. 3.4. This is done by

solving the �rst order di�erential equation

d�

dx
+

r
�

2
(�2 � �20) = 0: (3.8)
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The solutions to this di�erential equation is nothing but the 'Kink' and 'Anti-Kink'

solitons given by

� = ��0 tanh
�
mp
2
(x� x0)

�
: (3.9)

Here x0 is a constant of integration and is a free parameter of the solution. It

can be regarded as the position of the soliton. This parameter can be regarded

as the modulus of the 'Kink' or 'Anti-Kink', so we see that the moduli space of

this solution is M�= R. Note that the solutions approach the asymptotic solutions

�(�1) = ��0, as they should. As they now saturate the Bogomol'nyi bound, their

masses are given by

M =
2
p
2

3

m

g2
j Q j : (3.10)

From this mass relation it is clear that the weaker the coupling the heavier the soliton

or as g ! 0, the soliton lies in the non-perturbative spectrum of the theory. In strong

coupling on the other hand the soliton become light and will dominate the dynamics

of the theory. In these days there is a lot of interest in the concept of duality in

which a theory is invariant under the exchange of solitons with fundamental particles

when one at the same time changes the coupling constant, g ! 1=g. This is of the

type strong-weak duality also known as S-duality but we will leave the discussion of

this until chapter 6 where we look at dualities in string theory.

3.2 1+2 Vortices and Strings

Here will be considered an O(2) theory, but as O(2) basically is the same as U(1),

the theory can be rewritten into equivalent U(1) form instead. As for the domain

wall the presence of a string only arises through dimensional oxidation to 1 + 3{

dimensions. The Lagrangian describing the dynamics of the theory is given by

L = �1
4
F 2 � jD�j2 � �2j�j2 � �j�j4; (3.11)

where F = dA is the abelian gauge �eld strength with respect to the local U(1)

gauge invariance and � is a complex scalar. This theory has a degenerate vacuum

when �2 < 0 given by

�(x) = ei�(x)�0; Ai(x) = @i�(x); �0 = ��
2

2�
: (3.12)

Suppose that the Higgs �eld is everywhere non-vanishing, then the vacuum can, by

a local gauge transformation, be reduced to �(x) = �0; Ai(x) = 0. Doing pertur-

bations around this vacuum this spontaneous symmetry breaking will give both the

Higgs �eld and the vector boson (the A{�eld) mass given by

m2
H = 4��20; m2

V = 2e2�20; (3.13)
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where e2 is the coupling constant of the abelian gauge �eld. If the Higgs �eld on the

other hand vanishes for some point (or points) the direction (gauge) is not de�ned

in that point. This gives the possibility for the Higgs �eld to have a topologically

non-trivial winding. As r ! 1 the Higgs �eld must reach its vacuum expectation

value but this can now be written (up to local gauge transformations) like

�! �0e
in� ; as r !1; (3.14)

where r; � are plane polar coordinates. As the requirement that physical excitations

have �nite energy one can look at the static energy and see what other restrictions

this put on the �elds.

E =
1

4
F 2
ij + jDi�j2 + �(j�j2� �20)

2 (3.15)

Here it is obvious that for the energy to be �nite one have the additional requirement

Di�(x)! 0 as r!1 (3.16)

This condition can be used to solve for the gauge �eld, which then reads

Ai ! n

e
@i�(x; y) as r!1: (3.17)

So the gauge �eld tends to a pure gauge at the boundary which implies that the

gauge �eld strength tends to zero and enables the possibility of a �nite energy

solution. Another most intriguing implication of this is that the topologically non-

trivial boundary condition of the Higgs �eld leads to a magnetic charge which is

quantized in terms of the electric coupling constant, i.e.

qm =

Z
F =

I
S1
1

Aidx
i =

2�n

e
(3.18)

This is nothing but a Dirac quantization condition which looks more manifest if one

identi�es the smallest electric charge, qe, by qe = e. The quantization condition then

reads

qeqm = 2�n: (3.19)

So we have seen for this 2+1{dimensional theory with a U(1) gauge symmetry

contains topologically inequivalent vacua characterized by the winding of the Higgs

�eld at the boundary. The vacuum manifold is given by V �= G=H = U(1) �= S1 and

the Higgs �eld de�nes a map

�

j�j : S11 7�! G=H �= S1 (3.20)

x 7�! g(x) 2 G=H (3.21)
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The topological current de�ned by this map is given by

J� = � i

2��20
����@� ��@�� (3.22)

and the corresponding topological charge reads

Q =

Z
d2xJ0 = n (3.23)

Until now the discussion has just regarded properties of the solitons in case they exist

but there has not been a general proof of their existence. It turns out though that

the equations of motions are not possible to solve analytically but it is quite easy

to show their existence or to solve them numerically. Without doing any of these

alternatives we can nevertheless tell additional properties by doing the Bogoml'nyi

trick to rewrite the energy density in the form

E = j(D1 + iD2)�j2 + 1

2
[F12 + e(j�j2 � �20)]

2

+e�20F12 + (�� e2

2
)(j�j2 � �20)2 � i�ij@i(��Dj�)

The last term vanishes upon integration since it is a total derivative and Di� !
0; r!1, and if � � e2=2 there is a lower bound for the mass

M =

Z
d2xE � 2�jQj�20 =

�m2
V

e2
jQj (3.24)

The case � = e2=2 is special because then there exists BPS states. In this case the

Bogomol'nyi trick reduces the �eld equations to �rst order but neither in this case

they are analytically solvable. In this case it is clear that the Higgs �eld and the

vector boson have equal masses. The mass for the 1-vortex is given by

M1 =
�m2

V

e2
(3.25)

and it is clear that it is non-perturbative in the coupling constant e2. Further it must

be stressed that the solitonic solutions also in this case have integration constants

associated with them. These are the so called moduli parameters and as in the

domain wall solution associated with the location of the Vortex. The moduli space

is thereforeM1
�= R

2 for the 1-Vortex. Interesting to note about this model is that

it plays an important role in both Grand Uni�ed Theories and in non-relativistic

superconductors. In GUT it describes a cosmic string upon dimensional oxidation

with string tension (2��)�1 = 2��20 and in superconductivity it is precisely the

e�ective Landau-Ginzburg theory. Here the value � = e2=2 corresponds to the

border between type I and type II superconductors. In type II superconductors

there exist magnetic 
ux tubes corresponding to the vortices discussed above but in

type I superconductors they do not exist.
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3.3 1+3 't Hooft{Polyakov monopoles

In this section we will describe the solitonic monopole solutions to the Georgi-

Glashow model. These were �rst found by 't Hooft [14] and Polyakov [15]. The

Georgi-Glashow model is an SO(3) (or SU(2)) gauge theory coupled to a 'isovector'

Higgs �eld, �a. That is to say that it transform under the 3 of SO(3). 1 The model

is described by the following Lagrangian

L = �1
4
F��
a F a

�� �
1

2
(D��)a(D

��)a � �

4

�
�2 � �20

�2
(3.26)

where the covariant derivative of the scalar Higgs �eld is given by

(D��)
a = @��

a � e�abcV b
��

c (3.27)

and

F a
�� = @�V

a
� � @�V a

� � e�abcV
b
�V

c
� (3.28)

�abc being the Levi{Civita of SO(3). The potential term is on the same form as in

previous examples and gives rise to spontaneous symmetry breaking when taking a

vacuum solution into account. We will see that also in this case it is the vacuum

expectation value of the Higgs �eld that does the trick when it comes to the various

monopole con�gurations. But let us start by giving the spectrum of the model under

the symmetry breaking due to choosing a vacuum, say

�a = �0�
a
3 V a

� = 0 (3.29)

As is clear from the total energy of any �eld con�guration given by

E �
Z
d3x �00 =

Z
d3x

�
1

2

h
(Ba

i )
2 + (Ea

i )
2 + (�a)2 + [(Di�)

a]2
i
+ V (�)

�
(3.30)

where

�a =
�
D0�

�
a

F i0
a = Ei

a Fa ij = ��ijkBk
a (3.31)

this is a true vacuum in the sense that the energy is zero which will not be true

for the monopole con�gurations. The vacuum breaks the SO(3) symmetry of the

Lagrangian down to the stability group SO(2) �= U(1) and at the same time the

gauge �eld generators of the broken symmetries

W�
� =

1p
2

�
V 1
� � iV 2

�

�
(3.32)

1In the case of SU(2) �= Spin(3) we could consider a 'isospinor' Higgs �eld in the 2 of SU(2). This
Higgs �led would than carry half integer electric charge under the remaining U(1) gauge symmetry

after spontaneous symmetry breaking. This would alter the outcome of the Dirac quantization

condition to be derived.
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acquires mass

MW = �0jqj = �0e (3.33)

where q is their electric charge under the unbroken U(1). Its generator Qe is given by

the generator of the SU(2) gauge group that leaves invariant the VEV of the Higgs

�eld. One can use the Higgs �eld as a projector along itself to get the associated

generator

Qe = e
�a

�0
Ta = eT3 (3.34)

Also the Higgs �eld acquires a mass under the symmetry breaking

MH =
p
2� �0 (3.35)

The vacuum manifold is given by V = G=H = SO(3)=SO(2) = S2. We could now

search for VEV for the Higgs �eld with winding analogous to the case of the Vortex.

The simplest boundary condition would be

�a ! na(xi)�0; r !1 (3.36)

where na is an outward pointed normal unit vector given by

na(xi) = (sin � cos'; sin � sin'; cos �) =
xa

r
(3.37)

but we could of course have an arbitrary winding which can be expressed like

na(xi) = (sin � cosk'; sin � sin k'; cos �) (3.38)

instead. Now it is clear that the Higgs �eld again describes a mapping from the

boundary sphere at in�nity to the sphere of the vacuum manifold, i.e.

�

j�j : S21 7�! G=H �= S2 (3.39)

x 7�! g(x) 2 G=H (3.40)

The integer k in 3.38 denotes the winding number of this map. Again we have a

topological current

J� =
1

8��30
������abc@��

a@��
b@��

c (3.41)

which topological charge is given by the winding number k, i.e.

Q =

Z
d3x J0 = k (3.42)
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It will turn out that this topological charge will give rise to a magnetically charged

monopole under the unbroken gauge group U(1). It will also give a Dirac-like quan-

tization condition for magnetically charged objects and electrically charged ones. To

�nd out this we �rst note that again �nite energy requires the covariant derivative

of the Higgs �eld to turn to zero at in�nity, i.e.

D�� = 0 �2 = �20 (3.43)

This condition can be solved for the gauge �eld which then reads

V a
� =

1

�20e
�abc�

b@��
c +

�a

�0
A� (3.44)

where A� is arbitrary. This arbitrary �eld is nothing but the unbroken U(1) gauge

�eld lying in the direction of the Higgs �eld. As was said earlier the Higgs �eld

could be regarded as a projector onto the unbroken stability group U(1) of the

gauge group SO(3). In last equation it is manifest that the vector�eld A� lies in the

unbroken U(1) direction while the other term is orthogonal to the Higgs �eld. From

this relation the gauge �eld strength can be calculated and is seen to point entirely

in the direction of the Higgs �eld.

F a
�� =

�a

�0
F�� (3.45)

where

F�� =
1

e�30
�abc�

a@��
b@��

c + @�A� � @�A� (3.46)

The �rst term in the U(1) �eld strength contain the winding of the Higgs �eld. In

fact from 3.41 it is clear that the �eld strength satis�es the Maxwell equation with

a possible monopole con�guration given by the Higgs �eld, i.e.

@�F
�� = 0 @�

�F�� =
4�

e
J� (3.47)

The magnetic part of the U(1) �eld strength is given by

Bi =
�a

�0
Bi
a =

1

2
�ijkFjk =

1

2
�ijk

1

e�30
�abc�

a@j�
b@k�

c (3.48)

and the magnetic 
ux is given by

qm =

Z
S2
1

BidSi =

Z
d3x@iB

i =
4�

e

Z
d3xJ0 =

4�

e
Q (3.49)

So we see that if we take qe = e to be the fundamental electric charge we get the

Dirac quantization condition

qeqm = 4�n (3.50)
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which have an additional factor two in comparison with the original. This factor

two can be removed if one takes into account the spinor representation of SO(3)

which is SU(2) and take the fundamentally electrically charged particles to those

lying in the fundamental representation of the spin group namely the 2 of SU(2).

These will carry charge qe =
e
2 and we are back at the original Dirac quantization

condition. Now as we saw in the case of the Vortex, imposing boundary conditions

on the Higgs �eld with winding the Higgs �eld must be zero at some location in the

bulk which is regarded as the position of the monopole. But forcing the Higgs �eld

to zero costs energy and the monopole becomes massive. This mass can be given a

lower bound by the standard Bogomol'nyi trick.

(Ba
i )

2 + [(Di�)
a]
2
= [Ba

i � (Di�)
a]
2 � 2Ba

i (Di�)
a (3.51)

The energy can then be written like

E =

Z
d3x

1

2
[Ba

i � (Di�)
a]
2 �Ba

i (Di�)
a +

�

4

�
�2 � �20

�2
(3.52)

which implies that

M � �
Z
d3xBa

i (Di�)
a =

4�

e
�0jQj = 4�

MW

e2
jQj (3.53)

The BPS limit can only be obtained if we let � ! 0 which leaves us with a 1-

monopole mass given by

M1 = 4�
MW

e2
(3.54)

Again the solitonic monopole turns out to be non-perturbative in the coupling con-

stant.

3.4 Duality in �eld theory

In some �eld theories there appears a symmetry which is of a completely di�erent

origin compared to ordinary gauge symmetries. In gauge theories or in Einstein's

theory of gravity the symmetries are gauge invariance or di�eomorphism invariance

of the action describing the dynamics of the respective theory. The new symme-

try, referred to as duality, involves the interchange of �elds and coupling constants.

Basically duality can be described as an interchange between two di�erent �eld con-

stituents which often are dominant in two di�erent regimes of perturbation theory.

There are two basic features which characterize duality, namely

� Duality interchanges fundamental electrically charged particles with magneti-

cally charged solitons.

� Duality reverses the role of strong and weak coupling.
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To illustrate the role of duality let us �rst consider pure electromagnetic �eld the-

ory and discuss duality from its point of view. Maxwell's equations describing the

dynamics of the electric and magnetic �elds coupled to an ordinary electric source

read

r �E = � (3.55)

r�E = �1
c

@B

@t
(3.56)

r �B = 0 (3.57)

r�B =
1

c
J+

1

c

@E

@t
(3.58)

Here the speed of light is inserted to stress that a duality between the electric and

magnetic �eld need not be that obvious after all. As is seen from the Maxwell's

equations the coupling between the electric and magnetic �elds vanishes if c = 1.

In that case the �elds are completely independent of each other and one could

argue by slowly retard the speed of light, that magnetism is nothing but a drag

e�ect of the inability of the electric �eld to change over the whole region instanta-

neously. Nevertheless the appearance of non-unital coupling constants suggests that

this entanglement does depend on di�erent factors and that duality should be taken

seriously.

Dropping the electrical source term the free Maxwell's equations can quite easily

be seen to possess an SO(2) duality symmetry. The free �eld equations are

r �E = 0 r�E +
@B

@t
= 0

r �B = 0 r�B� @E

@t
= 0

Here the speed of light is put to one again. The SO(2) duality transformation leaving

the free �eld equations invariant is simply

E! E cos��B sin � (3.59)

B! B cos�+E sin � (3.60)

This duality transformation can most elegantly be rewritten in terms of a complex

vector �eld V = E + iB by which the duality transformation becomes

V ! ei�V (3.61)

The energy density and the Poynting vector can in terms of this complex vector �eld

be rewritten

E =
1

2

�
E2 +B2

�
=

1

2
jV j2 (3.62)

P = E�B =
1

2i
V
� � V (3.63)
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These quantities are thus manifestly symmetric under the duality transformation in

eq. 3.61 which is a U(1) �= SO(2) transformation. If one wishes to include matter

coupled to the electromagnetic �eld this duality symmetry vanishes, though, unless

one includes magnetic charges and currents in addition to the fundamental electric

ones. In complex notation these are included through

�c = �e + i�m (3.64)

jc = je + ijm (3.65)

Maxwell's equations coupled to a source term can thus be written in a manifestly

symmetric form under this duality transformation.

r � V = �c (3.66)

r� V = i
@

@t
V + ijc (3.67)

The duality symmetry holds if the source terms are transformed under the same

transformation as the complex vector �eld, i.e.,

�c ! ei��c (3.68)

jc ! ei�jc (3.69)

In this particular theory in four dimensions both the electric and the magnetic

charges are pointlike objects and denoted by qe and qm respectively, duality implies

the following transformation

qe + iqm ! ei�(qe + iqm) (3.70)

In ordinary theory of electromagnetism magnetically charged particles are absent.

This is solidly based on the lack of experimental evidence for their existence. As

was seen in previous section their experimental absence could be explained by their

considerable higher mass compared to electrically charged particles. As was shown

by Dirac [16] the existence of both electric and magnetic charges qe and qm in a

theory leads, upon quantization of the theory, to a certain condition on the charges,

called the Dirac quantization condition,

qeqm = 2�n (3.71)

where n is an integer. It turns out though that this electromagnetic �eld theory

is not suited to possess this duality in a consistent way. The Dirac quantization

condition is not invariant under the U(1) duality transformation for example. It is

only invariant under the discrete transformation obtained from eq.(3.70) for � = ��
2 .

Here the �elds transform according to

E! B B! �E (3.72)
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This transformation can be seen to be generated by a duality matrix, T , acting on

the two-vector consisting of the electric and magnetic �elds as�
E

B

�
!
�

0 1

�1 0

��
E

B

�
(3.73)

This duality matrix satis�es T 4 = 1l and thus generates the discrete duality group

Z4. There is however a familiar Z2 subgroup of this duality group known as the

charge conjugation. Applying the discrete duality transformation twice is equal to

applying the charge conjugation operator, i.e.

(E;B)! (�E;�B) (3.74)

Since the charge conjugation symmetry of the electromagnetic �eld theory is widely

known one often refer this discrete duality to be a Z2 symmetry instead. This

discrete duality is seen to exchange electrically charged particles with magnetically

charged ones, i.e.

qe ! qm qm ! �qe (3.75)

Although the duality symmetry in electromagnetic �eld theory still must be stressed

not to be really relevant, the argument due to the Dirac quantization condition is

not entirely true. The reason is that when including magnetically charged particles

into the theory one should rather include dyons which are both electrically and

magnetically charged. Taken two such dyons with electric and magnetic charges

equal to (qie; q
i
m) and (qje ; g

j
m) respectively and enforcing the angular momentum of

the electromagnetic �eld to be half-integer quantized we end up with a generalization

of the Dirac quantization condition, namely

qieq
j
m � qjeqim = 2�nij (3.76)

where nij is an integer. This goes under the name of Dirac{Schwinger{Zwanziger [17,

18] (DSZ) quantization condition. It can be seen to be invariant under the U(1)

duality transformation by introducing the complex charge by qc := qe + iqm which

makes the DSZ quantization condition to look like

Imqicq
j
c

�
= 2�nij (3.77)

This quantization condition is now manifestly duality invariant. Before discussing

theories which more realistically possess duality symmetries the problems with the

electromagnetic theory which thus far have been seen to work out, must be stressed.

It is when taken into account for modern analysis of gauge theories when the duality

in the electromagnetic theory fails. Notice that

1

2
V
2 =

1

2

�
E2 �B2

�
+ iE �B (3.78)
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which are respectively the Lagrangian of the electromagnetic �eld and the topological

charge density. These are thus not duality invariant but transform as a doublet

with an angle equal to 2� under the duality transformation. This means that the

Lagrangian is not duality invariant but because of the doublet transformation indeed

is invariant under charge conjugation. It is the vector potential needed to derive

Maxwell's equations that does not admit the duality transformation. By this date

there is no doubt that the physical origin lies in vector potential for several reasons

and thus rejects this electromagnetic duality. On the other hand the duality on

the �eld equations level have been very instructive in understanding the principles

behind duality symmetries.

Another interesting theory to study from the duality perspective is the Georgi{

Glashow model seen in previous subsection. This was described by a Lagrangian

L = �1
4
F 2 +

1

2
(D�)2 � V (�) (3.79)

where V (�) is the potential term for the Higgs �eld and must be at least fourth

order to get the gauge symmetry breaking required for the existence of magnetic

monopole solutions. In the Georgi{Glashow model it was taken to be

V (�) =
1

4
�(�2 � �20)

2 (3.80)

The Higgs vacuum admitting these solutions were

Da� = 0; V (�) = 0 (3.81)

This implies that �2 = �20 and the stable monopole solutions to the equations of

motions could be given from the winding of the Higgs �eld at in�nity,

qm =
1

2qe�20

Z
S2
1

�abc� � [@b�; @c�]dSa (3.82)

which ful�lled the Dirac quantization condition

qeqm = 4�n; n 2Z (3.83)

This theory does however admit dyonic solutions beside the pure magnetically

charged ones. The Bogomol'nyi bound for these solutions is revised to

M2 � �20(q
2
e + q2m) (3.84)

and the BPS states are those saturating this lower bound. Their masses are thus

completely determined by their charges. In the Georgi-Glashow model by letting

� = 0, or to be precise let � approach zero as a so called Prasad-Sommer�eld limit,

all static monopole solutions are in fact BPS states. In the mass formula one �nds

a striking Z2 duality by interchanging magnetic and electric states. This Z2 duality
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inverts the coupling constant and are thus a strong-weak duality in which the strong

coupling limit of the original theory is the weak coupling limit of its dual. This

duality was �rst proposed by Montonen and Olive [19]. A further analysis shows on

the other hand that this model must be extended in order to really ful�ll this Z2

duality. Before discussing what the problems are, the attention will �rst be put to

an extension of this duality through the inclusion of a so called Witten term in the

Lagrangian. This term is a non-dynamical topological term counting the instanton

number and looks like

�

32�2
Fab � F ab (3.85)

By introducing a complex coupling constant of the form

� :=
�

2�
+ i

4�

e2
(3.86)

and a complex �eld strength

Giab := F i
ab + i � F i

ab (3.87)

the part of the Lagrangian describing the dynamics of the gauge �eld can be rewritten

� 1

32�
Im(�Gab � Gab): (3.88)

Through this procedure the Z2 duality is extended to a larger SL(2;Z) duality. The

masses of the BPS states can be written like

M2 = 4��20n
tM(�)n (3.89)

where nt = (ne; nm) 2Z�Zand

M(�) =
1

Im�

�
1 Re�

Re� j� j2
�

(3.90)

It should be stressed that the only stable dyonic states are those where ne and nm
are relatively prime. This SL(2;Z) duality group includes the original Z2 duality

as a subgroup so it is an extension of the original strong-weak duality conjectured

by Montonen and Olive. But although very instructive this theory must be further

extended through supersymmetry in order to possess this duality symmetry as the

picture above is a bit to naive in its arguments. Basically Montonen and Olive

argued for this duality through two points by which the mass invariance under the

duality transformation was the �rst. Secondly the attention is put to the spectrum

which in the BPS limit contains one massless photon, one massless Higgs particle,

a massive electrically charged W boson, and a massive magnetic monopole. The

stability of the two-monopole solution implies that the force between two equally

charged magnetic monopoles vanishes. This is explained by the fact that the force
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from the coupled Higgs �eld is equally strong but opposite directed. So the second

argument was that if this was the case for the electrically charged W bosons the

conjecture suggested a duality through the interchange of W bosons with magnetic

monopoles. In the BPS limit this was indeed the case but nevertheless the arguments

are not strong enough to really entail this duality to the Georgi{Glashow model.

Their are two severe objections to the above duality. For one the W bosons are

spin 1 particles while the magnetic monopoles are spin 0 particles. Secondly the

mass formula is purely classical and might be revised through quantum corrections.

Supersymmetry resolves both these problems. In N=2 Super{Yang{Mills theory

Witten and Olive [20] proved that the above mass formula is a direct consequence of

the supersymmetry algebra, where both the electric and magnetic charges are parts

of the central charge. The preservation of the degrees of freedom through the Higgs

mechanism forces the states that acquires mass to be BPS states and the above

mass formula is obtained. See next chapter for details. Even so, the N=2 SYM

theory is not symmetric enough to contain this duality symmetry. The magnetic

monopole does not lie in the same multiplet as the W boson, in this theory which

makes duality impossible. The N=4 SYM theory, on the other hand, contains the

W boson and the magnetic monopole in the same multiplet and has been shown to

satisfy this Sl(2;Z) at the quantum level [21, 22].

Geometrically it was discussed in the last chapter that the dualities exchanging

the coupling constant with its inverse could be seen as interchanging the radius of

the gauge group by its inverse. The magnetic monopoles which are solitons can be

regarded as a winding of the gauge group over the base manifold. When discussing

string theory their appears a new type of duality called T-duality where the soliton

is changed to a string winding around a compact dimension. More on this in the

sequel.
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Supersymmetry

In the previous chapters gauge theories have been studied from a geometrical point

of view. In the context of almost product structures it was clear that Yang{Mills

theory and Kaluza{Klein theory were two 
avors of the same fruit. Although giving

a beautiful geometrical description of the di�erent �elds appearing in these theories

the APS approach tells us nothing about the fermionic spectrum of the physical

theories. As is widely observed in physical experiments there are several particles

obeying di�erent statistics to the so called exchange particles appearing in pure

Yang{Mills theory and inherently in the APS approach. These are the fermions

which are seen to transform under the spinor representation of the orthogonal group.

The fermions' dynamics are known to be described by the Dirac equation. To connect

a fermion to an exchange particle is done by letting the fermion be gauge valued.

It is then connected through what is called the minimal coupling scheme, which is

nothing but taking the gauge covariant derivative. When trying to �nd a uni�ed

theory of all interactions or a TOE (Theory Of Everything) this coupling between

fermions and bosons seems to be too weak. One would like some connection that

picked out the fermion spectrum given the boson spectrum or vice versa. There are

some important points that a �nal TOE must ful�ll

� Contain and explain all types of interactions.

� Derive the spectrum and all mass relations.

� It must be built from a couple of fundamental postulates. Or to put it trans-

parently, answer the question why it looks the way it looks and not in another

fashion.

These necessary conditions may seem quite obvious but if one takes a look at the

theories at hand no one ful�lls all these criteria. Yang-Mills theory for example,

can never be fundamental because nothing in the theory will choose what particular

43
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gauge group should be used. General relativity can not answer what dimension

we are supposed to live in. The theory with minimally coupled fermions does not

tell why there should be 3 families. Even if the standard model is enlarged into

a GUT (Grand Uni�ed Theory) where the gauge group SU(3) � SU(2) � U(1)

is embedded into an SU(5) or an SO(10) gauge group, which could then explain

the coupling angles in the SU(3) � SU(2)� U(1), it would still not pick out that

peculiar group. It could neither tell how many families of fermions there should be.

The Kaluza-Klein project, which seems to be the best attempt in unifying gravity

and Yang{Mills theory is not su�cient to be promoted to a TOE. The question of

what gauge group has only been reformulated as the question of what dimension

and topology the internal space should have. A new attempt to bring light to the

situation is the incorporation of supersymmetry. This chapter will contain a brief

review of supersymmetry with applications, starting with section 1 containing the

basic ideas behind supersymmetry while section 2 will contain a deeper insight in

the representations of the supersymmetry algebra in various dimensions. Section 3

will contain supersymmetric extensions of Yang{Mills theory and discuss some of

their properties. In section four we will discuss the extension of the Kaluza-Klein

project in generalizing gravity to supergravity.

4.1 Symmetry between bosons and fermions

In ordinary �eld theory the exchange particles of the internal symmetry group are

coupled to the matter constituents through the minimal coupling scheme. This

does not provide any restrictions to the matter content of the theory which would

be demanded in a uni�ed theory. A desirable theory would therefore include some

other symmetry with the feature of bringing a stronger connection between the mat-

ter constituents and the exchange particles. Classical �eld theory is based on two

di�erent kinds of �elds namely fermionic and bosonic �elds. They obey di�erent

statistics and are by the spin-statistic theorem forced to be half-integer spin and in-

teger spin �elds respectively. As the matter constituents are based on fermionc �elds

while the exchange particles are described by bosonic �elds the desired symmetry

would be one which is a symmetry between bosons and fermions. This symmetry has

been dubbed supersymmetry. Originally, supersymmetry was proposed by Gol'fand

and Likhtman in 1971 [23] where they enlarged the Poincar�e algebra by fermionic

generators, Q, obeying the anti-commutation rule

fQ;Qg = P (4.1)

and

[Q;P ] = 0 (4.2)

There is a classic theorem by Coleman and Mandula [24] which states that there

is no way to unify space-time symmetry and the internal gauge symmetry in any
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other fashion than the trivial direct product. This tells us that the internal gauge

group and the space-time do not talk to each other in the sense that eigenvalues of

the mass and spin operators cannot depend on the eigenvalues of the internal charge

operators. In other words there are no relations between masses and charges within

the theory which makes it unable to describe physics in a uni�ed way. Of course,

one can argue, in a modern fashion regarding principal bundles that this statement

says nothing more than the trivial theorem stating that every principle bundle of a

gauge group G over a topologically trivial manifold M must be topologically that of

the direct productM�G. In Kaluza{Klein theories with a topologically trivial base

manifold there is a dependence between the charges and the masses though. This

originates from the additional input concerning the radius of the gauge group which

is absent in usual Yang-Mills theory. But although bringing a possible relation

between masses and charges, Kaluza{Klein theory gives no input of the matter

constituents of the theory. These must still be put in by hand. In a supersymmetric

theory all particles have their supersymmetric partner. This ensures the existence

of the same number of bosonic and fermionic degrees of freedom which thus brings a

connection between matter constituents and exchange particles of the desired kind.

From the supersymmetric extension to the Poincar�e algebra above it is clear that the

generators of the supersymmetry, the Q's, are fermionic. In [25] it was shown they

were not just fermionic but merely of the precise spin 1
2 . There are other interesting

things that can be read o� immediately from the supersymmetry algebra. The

fact that Q commutes with P for instance tells that, although relating states of

di�erent spins, it commutes with the mass operator and can therefore not give any

information of the mass. This implies that all states in a supermultiplet will have

the same mass. By incorporating central charges into the algebra there appears a

lower bound to this mass in terms of the charges. (These features will be studied

more thoroughly in the upcoming section where the representations of the algebra

will be presented.) The positivity of the mass operator implies that there are no

negative energy eigenvalues in the spectrum, i.e., a supersymmetric theory can not

contain any tachyons. Noting that E � fQ;Qyg one �nds

0 �< jEj >�< fQ;Qyg >= j(Qyj >)j2 + j(Qj >)j2 (4.3)

For the vacuum state with zero energy this implies the equivalence

Ej0 >= 0 , Qj0 >= 0; Qyj0 >= 0; 8Q (4.4)

which states that supersymmetry is broken if and only if the vacuum energy is higher

than zero. So although no observations of supersymmetry has been done through

experiments, ones belief is that it is broken by a mechanism similar to the Higgs

mechanism.
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4.2 Representations of SUSY

Physical systems are in general described by a Lagrangian or an S-matrix which

possesses some symmetries. These symmetries form groups and we say that the

system is invariant under these speci�c symmetry groups. The standard example is

the Poincar�e group which is the symmetry group of special relativity. Most com-

monly these groups are Lie groups and they can be seen to be generated by their

associated Lie algebra. Physical states can be described by state vectors in some

representation of these algebras. So if one wants to classify all possible con�gura-

tion one would most eagerly search for the possible representation of the speci�c

algebra at hand. The representations of the Poincar�e algebra for instance was clas-

si�ed by Wigner already in 1946 [26]. Here the result includes the ordinary massive

and massless representations characterized by quantum numbers m and s where m

is a positive real number and s = 0; 12 ; 1; : : : . These quantum numbers are indi-

rectly eigenvalues of the Casimir operators P 2 and W 2 with eigenvalues �m2 and

m2s(s+ 1) respectively. Beside these representations, which are commonly referred

to as the physical representations of the Poincar�e algebra, there are yet the so called

tachyonic representations with negative m2. Here the associated Hilbert space is no

longer semi-de�nite but are plagued with states with negative norm. There are also

massless representations with continuous helicity eigenvalues, i.e., s is now a real

parameter. These states are usually referred to as unphysical. A system plagued

with these kind of unphysical representations is not desirable if one looks at the

ultimate goal of a complete uni�ed theory. In this typical example we can conclude

that the postulates of special relativity are not strong enough to rule out these

representations and therefore not strong enough to exclude them from our physical

theory. If the Poincar�e algebra is extended to the super-Poincar�e algebra, though,

these tachyonic representations immediately fall out and due to the step operators

in the spin, the Q's, the massless representations with continuous s are also ruled

out. This makes the supersymmetric algebra more appealing as it rules out these

kinds of unphysical states. Another advantage of the super-Poincar�e algebra is that

the �eld representations thereof are very restrictive, contrary to the representations

of the Poincar�e algebra itself where in principle all kinds of �eld con�gurations are

possible. In upcoming sections some interesting �eld representations of the super-

Poincar�e algebra are dealt with. These include Super{Yang{Mills and Supergravity

theories. In next subsections the origin of these representations are dealt with, mak-

ing a distinction between three di�erent kinds of representation. Here is of course

the massless representations and the massive representations. But in contrary to the

plain Poincar�e case the massive representations must be divided into two di�erent

sectors depending on whether there are central charges or not in the algebra.
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Dimension Spinor Type of spinor Number of susy

11 32 Majorana 1

10 16 Maj & Weyl 1,2

9 16 Majorana 1,2

8 16 Weyl 1,2

7 16 Dirac 1,2

6 8 Weyl 1, : : : ,4

5 8 Dirac 1, : : : ,4

4 4 Maj or Weyl 1, : : : ,8

3 2 Majorana 1, : : : ,16

2 1 Maj & Weyl 1, : : : ,32

Table 4.1: Minimal spinor representations in various dimensions

4.2.1 Massless representations

All interesting massless �eld representations of the supersymmetry extended Poincar�e

algebras can be found in a detailed review by Strathdee [27]. The most interesting

representations in string theory and supergravity will be presented here. To begin

with we need to classify the di�erent spinor representations in di�erent dimensions.

From Wetterich [28] the minimal spinor representations are given in terms of Dirac,

Majorana, Weyl and Majorana-Weyl spinors (see Table 4.1). These stand for plain,

real, chiral and chiral plus real spinor representations and are most frequently ap-

pearing in the physical literature. There is, though, a more suitable classi�cation

of the spinors in order to study the supersymmetry representations. Start with the

complete algebra including the generators of the automorphism group.

[M;M ] = M

[P;M ] = P

[P; P ] = 0

[Q;M ] = Q

[Q;P ] = 0

fQ;Qg = P + Z

[I; I ] = I

[I;M ] = 0

[I; P ] = P

[I; Q] = Q

[I; Z] = Z

[Z;M ] = [Z; P ] = [Z;Q] = 0

(4.5)

Here M stands for Lorentz generators, Z for central charges and I denotes the au-

tomorphism generators. To see what automorphism groups there are, the suitable

classi�cation is whether the spinor is self-conjugate or pairwise-conjugate under com-

plex conjugation plus if there is a real representation or not. These cases will lead
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D mod 8 Spinor type Automorphism group

0,4 Pairwise conjugate SU(N)� U(1)

1,3 Real SO(N)

2 Real SO(N+)� SO(N�)

5,7 Pseudoreal USp(N)

6 Pseudoreal USp(N+)� USp(N�)

Table 4.2: Automorphism groups for di�erent types of spinor representations

D mod 8 Representation of Q1=2 Real dimension 2n

0,4 (2
(D�4)=2
+ ; N)1 + h:c 2(D�2)=2N

1,3 (2(D�3)=2; N)1 2(D�3)=2N

2 (2
(D�4)=2
+ ; N+; 1) + (2

(D�4)=2
� ; 1; N�) 2(D�4)=2(N+ +N�)

5,7 (2(D�3)=2; N)1 2(D�3)=2N

6 (2
(D�4)=2
+ ; N+; 1) + (2

(D�4)=2
� ; 1; N�) 2(D�4)=2(N+ +N�)

Table 4.3: Transformations of Q1=2 under SO(D� 2)� Aut.

to the di�erent automorphism groups U(N), SO(N) or USp(N) according to Ta-

ble 4.2. When studying light-like representations, which contain no central charges,

we introduce light cone variables and observe that the algebra of the supercharges

must take the form

fQ1=2; Q1=2g = P+

fQ1=2; Q�1=2g = ~P

fQ�1=2; Q�1=2g = P�

(4.6)

As the D-momentum should be light-like a conventional frame to choose is

P+ = E; P� = 0; ~P = 0 (4.7)

The Q�1=2 is now seen to commute with everything and will thus just generate

zero-norm states. They can therefore be discarded upon why the physical infor-

mation entirely lies in the remaining Q1=2 generators and in the isotropic subgroup

SO(1; D � 1) which for the massless case is SO(D � 2) (To be more accurate the

largest semi-simple subgroup as the isotropic subgroup in fact is E(D�2)). Now

when counting the dimensions of the various representations recall that only half

of the Q1=2's will become creation operators, and so e�ectively only n = 1
4MN

generators will create states. M here is the minimal spinor dimension and N the

supersymmetry, why we e�ectively get the dimension to be 2n basically. Of course

representations can be extended by the direct product of some bosonic represen-

tation. The results is listed in table 4.3. We have now the power to classify all

representations but we will restrict ourselves to those of physical interest, namely
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those reducing to �elds containing not higher helicity than 2 in 4 dimension and

no with a spin 3=2 as highest state as it only couples consistently to the graviton.

The representations not listed here can be found in ref. [27]. Table 4.4 contains the

chosen representations discussed and table 4.5 contain a list of what the �eld content

of these representations are. In order to see in more detail how the representations

are explicitly found, the four dimensional case will be worked through explicitly. We

will follow the presentation in [29]. The most general D = 4 super-Poincar�e algebra

is the N -extended supersymmetry algebra which looks like

fQI
�; Q _�J

g = 2�IJ (�
�)
� _�
P� (4.8)

fQI
�; Q

J
�g = ���Z

IJ (4.9)

From this algebra one can work out the di�erent representations divided into three

sectors. First there is the massless, light-like representations with the central charge

put to zero, then there are the massive representations with or without the central

charge. These are treated in the next coming two subsections. In the massless case

though we have P 2 = 0 and can choose a reference frame in which P� = (E; 0; 0;E).

According to above discussion the N -extended supersymmetry algebra can be put

in the form

fQI
�; Q _�Jg = �IJ

�
4E 0

0 0

�
(4.10)

fQI
�; Q

J
�g = 0 (4.11)

Here we see that the QI
2; Q_2J can consistently be discarded when working out the

massless representations. This will not be true in the massive case though. One can

introduce new creation and annihilation operators by the de�nition

aI =
1

2
p
E
QI
1 a

y
I =

1

2
p
E
Q _1I (4.12)

The algebra of these operators become an N -dimensional Cli�ord algebra

faI ; ayJg = �IJ (4.13)

faI ; aJg = fayI ; ayJg = 0 (4.14)

The representations can be worked out starting from a Cli�ord vacuum, obeying

aI j 
 >= 0, and building up the massless supermultiplet by consequently act with

the creation operators on it.

1p
n!
(aI1)

y(aI2)
y � � � (aIn)y j 
 > (4.15)

with the number n running from 1 to N . The number of states in this expression is�
N

n

�
so the total number of states in the massless representation becomes

NX
n=1

�
N

n

�
= 2N (4.16)
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of course with a matching number of fermionic and bosonic states. The creation

operators a
y
I transform as (0; 12) under the Lorentz group and increases therefore the

helicity by one-half. So if the vacuum state j 
 > has helicity � the maximal helicity

state becomes

�max = �+
N

2
(4.17)

See Table 4.6 for a list of the physically interesting representations in 4 dimensions.

4.2.2 Massive representations, Z = 0

In the massless case half of the supersymmetry generators did not contribute to the

spectrum because they generated zero norm states. In the massive case though there

are no such zero norm states so all generators will contribute. The isotropic subgroup

is no longer SO(D� 2) but now SO(D� 1) why massive �eld representations have

dimensions di�erent from those of the light-like ones. The automorphism groups

are the same though why the structure is the same as in the massless case up to

the change of the little group from SO(D � 2) to SO(D � 1). This means that

representations of the supercharges now are with respect to this new little group.

This leads to the fact that the total number of states are squared in comparison to

the massless case. That is if the number of states were 2n in the massless case they

are now 22n. For the complete list of the representations see [27]. As an example

we will again work through the 4 dimensional case now with the massive condition

that P 2 = M2, but again in the absence of central charges. In this case we can go

to the rest frame P� = (M; 0; 0; 0), where the N -extended supersymmetry algebra

takes the form

fQI
�; Q _�Jg = 2M�IJ�� _� (4.18)

fQI
�; Q

J
�g = 0 (4.19)

So by introducing new creation and annihilation operators by

aI� =
1p
2M

QI
� (aI�)

y =
1p
2M

Q _�I (4.20)

we end up with a Cli�ord algebra now with the dimension 2N which is double the

dimension of the Cli�ord algebra in the massless case.

faI�; (aJ�)yg = ����
IJ (4.21)

faI�; aJ�g = f(aI�)y; (aJ�)yg = 0 (4.22)

Starting again from a Cli�ord vacuum state, obeying aI� j 
 >= 0, all massive

representations can be worked out by acting with the creation operators on the
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D N Representation M YM G

6 (2; 0) 22 = (2; 1; 1)+ (1; 1; 2) X

(2; 1; 1)� 22 = (3; 1; 1)+ (1; 1; 1)+ (2; 1; 2) X

(1; 2; 1)� 22 = (2; 2; 1)+ (1; 2; 2) X

(1; 2; 3)� 22 = (2; 2; 3)+ (1; 2; 2)+ (1; 2; 4) X

(2; 3; 1)� 22 = (3; 3; 1)+ (1; 3; 1)+ (2; 3; 2) X

6 (4; 0) (1; 3; 1)� 24 = (3; 3; 1)+ (1; 3; 5)+ (2; 3; 4) X

6 (2; 2) (2; 2; 1; 1)� 24 = (3; 3; 1; 1)+ (3; 1; 1; 1)+ (1; 3; 1; 1)+

(1; 1; 1; 1)+ (2; 2; 2; 2)+ (3; 2; 1; 2)+

(1; 2; 1; 2)+ (2; 1; 2; 1)+ (2; 3; 2; 1) X

6 (4; 4) 28 = (3; 3; 1; 1)+ (1; 3; 5; 1)+ (2; 3; 4; 1)+

(3; 1; 1; 5)+ (1; 1; 5; 5)+ (2; 1; 4; 5)

(3; 2; 1; 4)+ (1; 2; 5; 4)+ (2; 2; 4; 4) X

7 2 24 = (5; 1)+ (1; 3) + (4; 2) X

(5; 1)� 24 = (14; 1)+ (10; 1)+ (1; 1)+

(5; 3)+ (4; 2) + (16; 2) X

9 1 7� 24 = 27+ 21 + 7 + 1 + 8 + 48 X

9 2 28 = 1�4 + 7�2 + 21�2 + 10 + 70+

270 + 350 + 72 + 212 + 14+

8�3 + 8�1 + 48�1 + 481 + 81 + 83 X

10 (1; 0) 24 = 8v + 8c X

8v � 24 = 35v + 28v + 1 + 8s + 56c X

10 (1; 1) 28 = 35v + 56v + 28v + 8v + 1+

8s + 8c + 56s + 56c X

10 (2; 0) 28 = 1�4 + (28v)�2 + (35v)0+

(35�)0 + (28v)2 + 14+

(8s)�3 + (56s)�1 + (56s)1 + (8s)3 X

11 1 28 = 44+ 84 + 128 X

Table 4.4: Light-like supersymmetry representations
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dim Scalar V ector 2� form 3� form 4� form Graviton Spinor Gravitino

D � Am Amn Amnp Amnpq gmn �  m
4 (0) (�1) (0) � � (�2) (�1

2
) (�3

2
)

5 1 3 3 1 � 5 2 4

6 (1; 1) (2; 2) (3; 1); (1; 3) (2; 2) (1; 1) (3; 3) (2; 1); (1; 2) (3; 2); (2; 3)

7 1 5 10 10 5 14 4 16

8 1 6 15 10; 10 15 20 4; 4 20

9 1 7 21 35 35 27 8 48

10 1 8 28v 56v 35+; 35� 35v 8+; 8� 56+; 56�
11 1 9 36 84 126 44 16 128

Table 4.5: Field representations in various dimensions under the light-like little

group SO(D� 2). In D = 4 the helicities are listed instead.

N Representation M YM G

1 1�1=2 + 10 + 10 + 11=2 X

1�1 + 1�1=2 + 11=2 + 11 X

2 1�1=2 + 20 + 11=2 X

1�1 + 2�1=2 + 10 + 10 + 21=2 + 11 X

4 1�1 + 4�1=2 + 60 + 41=2 + 11 X

8 1�2 + 8�3=2 + 28�1 + 56�1=2 + 700 + 561=2 + 281 + 83=2 + 12 X

Table 4.6: Light-like representations for D = 4
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vacuum. The total number of massive states is squared in comparison to the number

of massless states and are

2NX
n=1

�
2N

n

�
= 22N (4.23)

In the upcoming subsection we will see how the spectrum can be altered by intro-

ducing central charges to the algebra. Here the familiar BPS states will reduce the

multiplets down to short ones.

4.2.3 Massive representations, Z 6= 0

If we add central charges to the algebra the creation operators will turn out to be

basically of the form

fa�; ay�g = m� z (4.24)

where z here represents all kinds of central charges. Now from the positivity condi-

tion we talked about earlier we get in fact an upper bound for the central charges,

namely

z � m (4.25)

This is nothing but the Bogomol'nyi bound or the BPS bound. Its presence has been

seen in the previous chapter where we found monopoles saturating this bound. In the

�rst equation we see that if the central charges satisfy this upper bound some creation

operators will fall out of the representations and it will become smaller. In the

general case with n0 central charges satisfying this upper bound the representations

will shrink to 22(n�n0) and if all n=2 central charges satisfy this bound we will

again have a 2n dimensional representation as in the massless case. In certain

theories the fact that we know the number of states to be that of the short multiplet

supersymmetry forces the central charges to satisfy the bound in order to keep the

degrees of freedom �xed. It is instructive to work through the 4 dimensional case

in order to identify the origin of these central charges. Starting with the center of

mass frame P� = (M; 0; 0; 0), the N -extended supersymmetry algebra with central

charges reads

fQI
�; Q _�Jg = 2M�IJ�� _� (4.26)

fQI
�; Q

J
�g = ���Z

IJ (4.27)

By restricting to N = 2 the central charges can be rewritten in terms of a single

complex central charge. As was shown by D. Olive and E. Witten in 1978, this

central charge can be written in terms of the electric and magnetic charge when

present

ZIJ = 2�IJZ = 2�0�
IJ (qe + iqm) (4.28)
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where �0 is the vacuum expectation value of some scalar �eld. The form is evidently

not so surprising following the solitonic solutions of the previous chapter. Due to the

presence of the central charges one favorably introduce two di�erent sets of creation

and annihilation operators ful�lling

a� =
1p
2

�
Q1
� + ���(Q

2
�)
y
�

(4.29)

b� =
1p
2

�
Q1
� � ���(Q2

�)
y
�

(4.30)

With these operators the supersymmetry algebra takes the form

fa�; ay�g = 2(M+ j Z j)��� (4.31)

fb�; by�g = 2(M� j Z j)��� (4.32)

The positivity condition now requires the right hand sides of this algebra to be

non-negative. This is the Bogomol'nyi bound given by

M �j Z j (4.33)

and can depending on taste be seen as an upper bound for the central charges or a

lower bound for the mass. When the mass of a state ful�lls this bound it is referred

to as a BPS state. In that case the mass is completely given in terms of the charges

of the system which in this 4 dimensional N = 2 case would read

M =j Z j= �0
p
q2e + q2m (4.34)

In the case of a BPS state the half the algebra vanishes and we have again a short

multiplet as was the case for the massless representations. We say that half the

supersymmetry is broken but one should rather say that a BPS solution to a su-

persymmetric �eld theory preserves half the supersymmetry. The b�'s operators

generate the unbroken supersymmetries while the broken supersymmetry operators,

the a�'s, instead generate the supermultiplet. In higher dimensions we will see that

the central charges are represented by anti-symmetric tensor �elds and that BPS

states are p-brane solutions which are charged under these anti-symmetric tensor

�elds.

4.3 Super{Yang{Mills

Yang{Mills theory can today describe a lot of observed phenomena in particle

physics. The standard model, which is the best non-gravitational model in describ-

ing physical phenomena, is built upon a scalar �eld (Higgs) coupled to a Yang{Mills

�eld, a so called Yang-Mills-Higgs system. The quantization procedure of Yang{

Mills theory is built on perturbation theory where one expands in powers of the



4.3 Super{Yang{Mills 55

coupling constant. These powers are the same as the number of loops in the corre-

sponding Feynman diagram. Here problems occur when studying phenomena of the

strong interaction described by an SU(3) gauge theory because the large coupling

constant makes perturbation theory fail. For these strongly coupled theories the

hope relies on duality. If the theory possesses a strong-weak duality which inverts

the coupling constant, i.e. g ! 1
g
, it would imply that the strongly coupled theory

could be retained by perturbation theory of the weakly coupled dual theory. In the

Georgi{Glashow model we saw that there were indications that this theory indeed

possessed these kind of duality properties but it was later shown that it did not. The

basic feature opposing this duality was the fact that magnetic monopoles had spin

0 while the W bosons had spin 1 and could thus not be related through a duality

transform. By extending this theory to a supersymmetric version this obstruction

can be removed. The requirement are that the four-dimensional theory is fully ex-

tended to N = 4 supersymmetry. A brief attention will be put at the structure of

these supersymmetric extended Yang{Mills theories.

4.3.1 N = 1, D = 4

To obtain the N = 1 SYM theory in 4 dimensions we begin by looking at the �eld

content in the representation table 4.6 and �nd

1�1 � 1�1=2 � 11=2 � 11 = �� �Aa (4.35)

where � is a chiral spinor and A is the gauge potential. These can be combined into

a vector super�eld in the following form

V = : : :� ��a��Aa + i�2(����)� i��2(��) + 1

2
�2��2D (4.36)

whereD is a auxiliary �eld. The gauge potential Aa is a non-abelian gauge �eld taken

in the adjoint representation and thus all �elds must lie in the adjoint representation

of this gauge group. This vector super�eld is often referred to as the prepotential

because it is unconstrained and the true gauge potential can be derived from it. So

by de�ning

W� =
1

8g
�D2(e2gVD�e

�2gV ) (4.37)

where g is the gauge coupling constant, one �nds that

W = (�i�+ �D � i�ab�Fab + �2�ara
��)(y) (4.38)

where ya = xa+i��a��. From this the N = 1 SYM lagrangian can �nally be obtained

�1
4

Z
d4xd2�trW 2 =

Z
d4xtr

�
�1
4
FabF

ab +
i

4
Fab ~F

ab � i��ara
��+

1

2
D2

�
(4.39)
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The second term is of course a topological invariant giving, under integration, the

instanton number. So by introducing the complex coupling constant due to Witten

� =
�

2�
+ i

4�

g2
(4.40)

the action can be rewritten the standard form for studying duality properties.

1

16�
Im

�
�

Z
d4xd2�trW 2

�
=

1

g2

Z
d4xtr

�
�1
4
FabF

ab +
g2�

32�2
Fab ~F

ab � i��ara
��+

1

2
D2

�
(4.41)

It can further be coupled to matter �elds but this coupling is left out here.

4.3.2 N = 2, D = 4

Deriving lagrangians with higher order supersymmetry could be a tedious work. If

one just starts with the representation and introduce all �elds there is no general

scheme in how one incorporates the �elds in a supersymmetric manner. But a

very nice and fruitful trick can be done, namely that of dimensional reduction. In

short what one does is to look at an N = 1 theory in a higher dimension. These

are all well known because the N = 1 theory looks pretty much the same in all

dimensions. The dimension chosen is of course that which preserves the total number

of supersymmetry generators, i.e. if we want N = 2 in four dimensions with a total

of 2�4 = 8 supersymmetry generators we need a space-time dimension with spinors

of real spinor dimension 8. By looking at the dimensions in table 4.1 we �nd that

both 5 dimensions and 6 dimensions have this spinor dimension, so we conclude that

N = 2; D = 4 could be obtained from N = 1; D = 6 or D = 5.

Starting with the N = 2 representation we �nd

1�1 � 2�1=2 � 10 � 10 � 21=2 � 11 = Aa � � _� �  � � � (4.42)

So the �eld content is one gauge �eld Aa, two spinors �;  of di�erent chirality and

one complex scalar �. Now this is exactly the �eld content one gets if one combines

the N = 1 gauge �eld representation with the N = 1 matter representation, so

one suspects that these could be put together in some way which would extend the

supersymmetry toN = 2. This is in fact so and the way they should be put together

is in the form

I = Im tr

Z
d4x

�

16�

�Z
d2�W 2 +

Z
d2�d2���ye�2gV�

�
(4.43)

Of course the second supersymmetry is not manifest in this form and thus one

would like to put this lagrangian in a more manifest N = 2 form. This can be done

by introducing an N = 2 super�eld built from a second set of spinor coordinates

denoted ~�. The �eld looks like

	 = (� +
p
2~�W + ~�2G)(~y; �) (4.44)
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where ~ya = xa + i��a�� + i~��a
�~� and

G(~y; �) = �1
2

Z
d2���ye�2gV (4.45)

where � = �(~y � i��a��; �; ��) and V = V (~y � i��a��; �; ��). The lagrangian can now

be put in the form

I = Im

�
�

16�

Z
d4xd2�d2~�

1

2
tr	2

�
(4.46)

Performing the d2~� integration gives us back the action in the form (4.43). Now by

de�ning

F(	) := 1

2
tr�	2 (4.47)

the action can be rewritten into the form

I =
1

16�
Im

Z
d4xd2�d2~�F(	) (4.48)

Noticeable is that F only depends on 	 and not on 	y. This is referred to as the

holomorphicity condition of the prepotential, F . So the requirement of N = 2 su-

persymmetry is transformed into the holomorphicity constraint of the prepotential.

Performing the d2~� integration now leaves us with

I =
1

16�
Im

Z
d4x

�Z
d2�(W 2)ijFij(�) +

Z
d2�d2��(�ye�2gV )iFi(�)

�
(4.49)

where Fi(�) := @F(�)
@�i

; Fij(�) := @2F(�)

@�i@�j
and i; j are gauge indices. Although

this theory does not consist of magnetic monopoles with spin one, and thus can

not possess a Montonen{Olive duality, Seiberg and Witten [30] have shown that

it possess another striking duality property. The action can be shown to be form

invariant under the duality transformation

�D = F 0(�); F 0
D(�D) = �� (4.50)

which can be seen as a Legendre transformation of the form FD(�D) = F(�)���D

and then to be in fact SL(2;Z) self dual, see [31]. Choosing a Higgs vacuum, say a

with dual aD the metric of the moduli space is given by

ds2 = Im(daDd�a) (4.51)

The symmetry breaking due to the speci�c choice of vacuum forces the solutions to

be BPS states as they were contained in a short multiplet before the breaking and

must remain so. The central charges of these states can be written

Z = ane + aDnm (4.52)
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with mass formula

m2 = jZj2 (4.53)

Now the SL(2;Z) transformations of the a's leaves this mass formula invariant.

Seiberg and Witten went further to show that the it was preserved under quantum

theory. They were also able to prove con�nement in this N = 2 super Yang-Mills

theory.

In paper I we looked at the dyon spectrum for N = 2 super Yang-Mills with

higher gauge groups, especially SU(3), coupled to matter multiplets. There we saw

that this duality procedure is not in fact easily transferred to the general case and

there are thus a lack evidence why this theory in fact should be SL(2;Z) self-dual.

In this paper we also derived the moduli space for the (1; 1) monopole con�guration

of the gauge group SU(3). We found it to be

R
3� S1 � Taub�NUT

Z2
(4.54)

4.3.3 N = 4, D = 4

The Lagrangian of N = 4 super Yang-Mills contains, in addition to the vector

super�eld V as before, also three chiral super�elds �i transforming according to the

adjoint representation of the gauge group. It is given by

L =
1

e2

Z
d2�d2��

3X
i=1

��ie
2V�i +

1

8�
Im

�Z
d2� �W�W�

�

�
�Z

d2�
p
2�1�2�3 + h:c:

�
(4.55)

This theory can be proven to possess all the features of the proposed Montonen{Olive

SL(2;Z) duality. See [32] for details.

4.4 Supergravity

Next example of supersymmetric theories are those including gravity. These are

called supergravity theories and are characterized by the existence of the metric

tensor in the multiplet. After the development of higher-dimensional supersymme-

try representations it was discovered that the four-dimensional superalgebra with

higher N could be deduced from higher-dimensional superalgebras through dimen-

sional reduction. Through the Kaluza-Klein ansatz there was a great e�ort put in

trying to compactify higher-dimensional supergravity theories to four dimensions in

hope of getting a realistic theory with low energy behavior as that of the standard

model. It was early seen [33] that there was only one candidate in order for this
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to happen, namely D = 11 supergravity. This is so due to the fact that D = 11 is

the upper limit for a theory consisting of no higher spin than 2 when compacti�ed

down to four dimensions and the lower limit for a space to leave us with gauge group

SU(3)�SU(2)�U(1) upon compacti�cation. The �rst half of the 80's were spent in

classifying compacti�cations for all kind of topologies of the internal space. But for

this to be a fundamental theory describing all interaction a series of problems arose.

One problem was that the supergravity theory is not renormalizable and thus al-

though possessing beautiful symmetries it is still not a consistent quantum theory of

gravity. Another problems were that chiral spinors could not be obtained through

the common compacti�cation procedure. There was also a problem in obtaining

the right number of families upon compacti�cation. The mass spectrum obtained

through compacti�cation were built in towers with all particles lying in the Planck

mass regime and it was thus believed that all observed elementary particles must

lie in the massless spectrum and acquire mass through quantum corrections. Two

of these problems were later solved by Witten as he showed that chiral spinors can

be obtained by compactifying over certain orbifolds. The right number of families

can also be obtained by compactifying the obtained 10 dimensional theory a Calabi{

Yau manifold with euler number 6. This is due to the discovery that the number of

families are followed by the role

Nf =
�(M )

2
: (4.56)

Another problem yet to be resolved is the so called vacuum degeneracy problem

[34, 35] which is referred to as the problem of picking out one speci�c Calabi{Yau

manifold from an in�nite number. Today supergravity theories have been widely

enriched through superstring theory and in the sequel of this section focus will be

�rmly put on those supergravity theories of special interest in string theory.

4.4.1 D = 11 supergravity

As will be the case for all supergravity theories treated here the �eld content will be

read o� the representation table 4.4. For the N = 1 supersymmetry representation

in eleven dimensions containing the graviton the total spectrum looks like

44� 84 � 128 = gmn �Amnp �  m� (4.57)

With this �eld content Cremmer, Julia and Scherk were able to write down a super-

symmetric lagrangian [36] describing the dynamics of the �elds. The bosonic part

of this action reads

I11 =
1

�2

Z
d11x

p�g(R� 1

48
F 2
(4))�

1

12

Z
F(4) ^ F(4) ^A(3) (4.58)

where F is the �eld strength of the potential A de�ned by F(4) := dA(3).
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It should be emphasized that the equations of motions, derivable from the action

above, can be retained by imposing a couple of constraints to the �elds in the

superspace formulation. Here the equations of motion are obtained by solving the

integrability conditions which are just the Bianchi identities of the �elds in question.

See [37] for details. This principle will also be the ground for possibility of treating p-

brane dynamics in various supergravity theories through superembeddings. Here the

equations of motions are obtained by imposing certain constraints on the embedding

matrix, called embedding conditions. See paper II for details.

The D = 11 N = 1 supergravity theory has been deeply dissected [36, 38, 37]

over the �rst half of the 80's. The biggest e�ort have perhaps been put in deriv-

ing the resulting spectra obtained through compacti�cation over di�erent compact

internal manifolds. The main study has been compacti�cations down to four dimen-

sions. Here the most interesting cases are internal manifolds with isometry group

SU(3)�SU(2)�U(1) or rather manifolds with isometry group containing this gauge
group as a subgroup. The reason is of course that the gauge group of the standard

model is obtained this way. All these manifolds have been classi�ed and denoted

M(m;n); m; n 2 Z, where the integer numbers m;n is the topological classes of a

U(1) bundle over CP 2 �S2, see [39]. These manifolds all have the property of being
Einstein manifolds and all but two have isometry group SU(3) � SU(2) � U(1).

The other two are M(1; 0) = S5 � S3 and M(0; 1) = CP 2 � S3 which have isom-

etry groups SU(4) � SU(2) and SU(3) � SU(2) � SU(2) respectively. All these

manifolds have full holonomy group H = SO(7) except for M(3; 2) with holonomy

group H = SU(3). This means that it does not break all the supersymmetry upon

compacti�cation but there is a N = 2 supersymmetry left in four dimensions. Other

manifolds of interest have been S7 and T 7 because they are both parallelizable. This

means that there is a global non-Levi{Civita connection with vanishing curvature

which implies that the holonomy group is just the identity. Through the Killing

spinor equation with this typical connection no supersymmetry is seen to be broken

upon compacti�cation. When considering compacti�cations it is worth noting that

the concept of dimensional reduction is the same as compacti�cation over the torus,

here T 7, and just throwing away the massive modes.

4.4.2 D = 10 type IIA supergravity

Looking at the table of massless representations 4.4 restricting to ten dimensions

and N = (1; 1) the �eld content looks like

35v � 56v � 28v � 8v � 1 = gmn � C(3) �Bmn � C(1)� � (4.59)

8s � 8c � 56s � 56c = �� � � _� �  m� �  m_� (4.60)
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These �elds can be incorporated into a supersymmetric action which is called type

IIA supergravity of which the bosonic part reads

IIIA =
1

�2

Z
d10x

p�g
�
e�2�[R+ 4(@�)2 � 1

12
H2
(3)]�

�[1
2
R2
(2) +

1

24
R2
(4)]

�
� 1

4

Z
dC(3) ^ dC(3) ^B(2); (4.61)

with H(3) = dB(2), R(2) = dC(1) and R(4) = dC(3)+H(3) ^ C(1).

The name type IIA supergravity originates from type IIA superstring theory

[40]. The background in which type IIA superstring theory propagates is namely

type IIA supergravity. To be more precise, type IIA supergravity is the low energy

background of type IIA superstring theory to �rst order in �0.

4.4.3 D = 10 type IIB supergravity

Type IIB theory is chiral [41, 42, 43] so from the representation table 4.4 for D = 10

with N = (2; 0) instead the �eld content reads

(35v)0 � (28v)2 � 14 = gmn � Bmn � � (4.62)

1�4 � (28v)�2 � (35�)0 = C(0) � C(2) � C+
(4)

(4.63)

(8s)�3 � (56s)�1 � (56s)1 � (8s)3 = �� � ~�� �  m� � ~ m� (4.64)

This theory contains a self-dual 4-form so there is no action formulation of the theory.

But excluding this �eld for now, an action for the rest of the �elds can be written

down. This theory contain an SL(2;R) self-duality so the action will be written in

such a transparent way as possible in order to make this self-duality of the type IIB

theory manifest. (For more discussions regarding various dualities in these di�erent

supergravity theories see chapter 6.) The action for the rest of the �elds looks like

IIIB =
1

�2

Z
d10x

p�g(R� 1

12
HT
mnpMHmnp +

1

4
tr(@mM@mM

�1)); (4.65)

where

H = d ~B =

�
dB(2)

dC(2)

�
; M = e�

� j� j2 C(0)

C(0) 1

�
; � = C(0) + ie�: (4.66)

This can be seen to be invariant under a global SL(2;R) transformation. Introducing

� =

�
a b

c d

�
2 SL(2;R) the transformations

M ! �M�T � � ! a� + b

c� + d
; and ~B ! (�T )�1 ~B (4.67)

can be seen to leave IIIB invariant. This duality is of course preserved on inclusion

of the self-dual 4-form and the fermion �elds.
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4.4.4 D = 10 type I supergravity

Following the same procedure and by looking at the representation table bearing in

mind this case only possesses N = 1 supersymmetry one �nds a �eld content of

35v � 28v � 1 = gmn � Bmn � � (4.68)

8s � 56c = �� �  m_� (4.69)

From the representation table 4.4 it is obvious though that there is also a N = 1

Super{Yang{Mills representation. This is often used to derive N = 4 Super{Yang{

Mills in D = 4 by dimensional reduction. What is striking here is that this SYM

representation can be coupled to the supergravity multiplet. From the point of view

of pure supergravity one could of course have left out this SYM representation but

as there is no doubt that the basic interest are put at various string theories, the

type I supergravity theory is the low energy e�ective background of that theory.

The N = SYM multiplet can be read o� from the same representation table 4.4 and

looks like

8v � 8c = Am � � _� (4.70)

The coupling between these theories was worked out already in (82), see [44, 45, 46].

Before writing down the bosonic part of the action describing the dynamics of these

�elds it must be said that there actually are twoN = 1 supergravity theories coupled

to SYM. The �rst with above �eld representation is called heterotic supergravity and

have a bosonic action which looks like

Ihet =
1

�2

Z
d10x

p�ge��
�
R+ 4(@�)2� 1

12
H2
(3) �

1

4
trF 2

�
; (4.71)

Here H(3) = dB(2) and F = dA+A^A, and A transforms in the adjoint representa-

tion of SO(32) or E8 �E8. The other supergravity multiplet with the �eld content

but with di�erent dilaton coupling is called the type I supergravity multiplet. Its

bosonic action reads

II =
1

�2

Z
d10x

p�g
�
e�2�[R+ 4(@�)2]� 1

12
R2
(3) �

1

4
e��trF 2

�
; (4.72)

Here R(3) = dC(2) and F = dA + A ^ A is the �eld strength of an SO(32) gauge

�eld. The appearing of these typical gauge groups is due to anomaly cancellation in

superstring theory.
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String Theory

In ordinary quantum �eld theory, elementary particles are described through the

Feynman diagrams as pointlike objects. These theories are therefore often plagued

with ultraviolet divergences due to the extreme locality of the particles. In a

theory where the fundamental objects no longer are pointlike but instead higher-

dimensional, these ultraviolet divergences disappear because the extreme locality of

a point particle vertex is exchanged to a tube-like vertex with no remaining unique

interaction point. In string theory ordinary particles are reinterpreted as vibra-

tional modes of the string. This makes string theory a very pleasant generalization

of ordinary �eld theory. String theory from a purely mathematical point of view

originated a long time ago with the study of minimal surfaces including strings,

and was well classi�ed already by Gauss. In physical theories the entry of particles

built from higher-dimensional objects was due to Dirac in 1950, when he discussed

the matter of in�nite energies in the point particle models and proposed strings

and membranes as the solution to this problem. He was the �rst to write down

an action describing the dynamics of these objects. Later at the end of the 60's

Veneziano was trying to describe the strong interaction with something called the

dual resonance model which later was shown to be describing the scattering of open

bosonic strings. This was noticed together with the real entry of string theory due

to Ramond, Neveu and Schwarz when they introduced the fermionic string model

in 1974, which independently was discovered by Gol'fand and Likhtman already in

1971. At this time string theory had no intentions of trying to describe the physical

world in a uni�ed manner but was merely a model of the strong interaction. In

1973 though, QCD was proposed and gave better predictions than the string model

so string theory was widely abandoned. I was not until 1984 that string theory

reappeared now as a possible theory for describing all forces in the universe. This

period of time (1984-1985) are usually referred to as the �rst string revolution. Here

an anomaly cancellation mechanism was found when coupled to the gauge groups

63
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SO(32) or E8�E8 and the two heterotic superstring theories were discovered. But

maybe the most encouraging result was that upon compacti�cation down to four

dimensions one could, by compactifying over certain Calabi{Yau manifolds, obtain

not only the gauge group of the standard model but also the right number of fam-

ilies. The Calabi{Yau manifolds preserves only one quarter of the supersymmetry

so the obtained theory in four dimensions is a N = 1 supersymmetric theory with

three generations of chiral fermions including gravity. The problem persisting was

merely the vacuum degeneracy problem and was basically the fact that there are too

many possible vacuum con�gurations or in other words Calabi{Yau manifolds. This

is not even up to this date completely resolved. To summarize one was left with

�ve consistent superstring theories which from a uni�ed point of view looks a bit

disturbing, but in comparison with the merely in�nite number of theories available

outside the superstring regime this was nevertheless quite satisfying. The massless

spectra of these theories will be derived in the following sections.

The second string revolution came in the mid 90's when all these consistent

string theories were put on equal footing through the eyes of duality. Here the

former D = 11 supergravity theory was reinstated as a part of the total M-theory

of which all these theories were merely some perturbative regime. These dualities

will be discussed in next chapter where probes of the dualities in terms of p-branes

are introduced. So string theory does in fact propose higher-dimensional objects in

the spectrum as solutions to the background �eld equations. Interesting to note is

that string theory contains a minimal length � p
�0 which can be found from the

modi�ed Heisenberg's uncertainty principle, namely

�x � ~

�p
+ �0

�p

~
(5.1)

The modi�cation of Heisenberg's uncertainty principle is due to the fact that strings

become larger at higher energies which is not the case for a point particles, see

[47, 48]. This e�ect can most easily be seen through T-duality, a duality which will

be presented in next chapter.

This chapter contains two sections of which the �rst is subjected to the bosonic

string theory which, although not consistent due to the presence of tachyons in

the spectrum, contains a lot of information which is also true in the superstring

theory. In section two the �ve consistent superstring theories are exploited where

for instance their massless spectra are derived. For a more detailed study see Refs.

[49, 50, 51, 52, 53, 54, 55].

5.1 Bosonic String

String theory is basically a generalization of the notion of point particles. Here the

fundamental particles are replaced by one-dimensional strings which through their

propagation in time sweeps out what is called the two-dimensional world-sheet. The
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dynamics of the string is derived from the principle of minimizing the area of the

world-sheet in a similar way as an ordinary point particle is described by minimizing

the length of its world-line. The action describing this kind of motion is �rst due to

Dirac-Nambu-Goto [56, 57] and reads

SDNG = T

Z
�

d2�

q
�det(@mXm@nXn�mn): (5.2)

This action functional simply measures the total volume of the world-sheet. Unfor-

tunately the square root in the action makes it very hard to handle mathematically,

especially upon quantization. It is therefore more suitable to rewrite the action in

the following form

SBDH = �T
2

Z
�

d2�
p
hhmn@mX

m@nXm: (5.3)

which was originally done by Brink, Di Vechia and Howe [58]. Although the ac-

tion is put on a mathematically more pleasant form, the drawback is of course the

introduction of the auxiliary world-sheet metric. By introducing auxiliary �elds

into an action the theory receives additional algebraic constraints. On shell will the

additional constraint in this case only lead to a coupling between the auxiliary world-

sheet metric being and the induced metric of the embedding. When quantizing the

theory, though, the �elds are put arbitrarily o� shell which leads to new problems.

So although the action in this form is quadratic in the x's which makes the normal

quantization procedure work, it is basically quantum mechanically inequivalent to

the Dirac{Nambu{Goto theory. This a typical example of the arbitrariness in the

quantization procedure which must be seen as a major drawback in today's under-

standing of quantum �eld theory. In this case there are two classically equivalent

theories with di�erent quantum theories. There is actually one target space dimen-

sion in which they are equal and this is the same dimension in which the quantum

theory of the BDH action is conformal invariant, and that is D = 26.

Before digging any deeper into the features of the quantized bosonic string let us

take a look at the classical dynamics of the string �rst. Recall that a metric in two

dimension is always locally conformally 
at which means hmn � e��mn. The BDH

action can additionally be seen to be conformally invariant, and in what is called a

conformal gauge the action can be rewritten in the form

Scg = �T
2

Z
�

d2��mn@mX
m@nXm: (5.4)

From this action the equations of motion of the bosonic string can most easily be

derived. The string dynamics is seen to be described by the ordinary wave equation

�Xm = 0; (5.5)
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whose solution contains two di�erent parts, called left and right moving modes. The

solution, X , can thus be decomposed into its left and right moving parts.

Xm(�; �) = X
m
L (� + �) +X

m
R (� � �): (5.6)

As the wave equation is a di�erential equation of order two, two boundary conditions

must be imposed to solve it exactly. There are three di�erent types of boundary

conditions namely

String type Type Boundary condition

Closed Periodic Xm(� + 2�) = Xm(�)

Open Dirichlet Xm(0) = Xm(�) = 0

Neumann @�X
m(0) = @�X

m(�) = 0

(5.7)

For the closed strings with periodic boundary conditions the solution can be written

Xm(z; �z) = qm � i

4
�0pmln(z�z) + i

r
�0

2

X
n6=0

1

n

�
�mn z

�n + ~�mn �z
�n
�

(5.8)

where aWick rotation has been done and complex coordinates de�ned by z := e(�+i�)

have been introduced. The open string solution with Neumann boundary condition

only contains half the oscillator degrees of freedom due to an equivalence between

left and right moving modes. Its solution have the di�erent look

Xm(z; �z) = qm � i�0pmln(z�z) + i

r
�0

2

X
n6=0

�
m
n

n

�
z�n + �z�n

�
: (5.9)

The situation with Dirichlet boundary conditions will be left to chapter 7 where the

concept of D-branes is introduced.

Looking at the quantum theory of the bosonic string there are a couple of di�erent

approaches, all of which pick out the dimension of the target space to be 26 in order

for the theory to be consistent. Some typical problems encountered that pick out

this dimension are

� In light-cone gauge the closure of the Lorentz generators at the quantum level

is only possible in 26 dimensions.

� In the old covariant quantization approach a ghost free spectrum can only be

obtained for D � 26 and unitarity at higher loop levels restricts the dimension

further, to 26.

� In the path integral formalism imposing conformal invariance at the quantum

level implies D � 26 where D = 26 is a critical dimension which decouples the

so called Liouville �eld (the conformal mode of the metric) from the action.

In all other cases the Liouville �eld becomes a dynamical variable.
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So the �rst problem with bosonic string theory at the quantum level is that it only

is consistent in a target space with 26 dimensions. Another problem arises from

the spectrum of the theory, the lowest state is namely a tachyon, i.e., a state with

negative mass square. Tachyon states were discussed in previous chapter, where

they were referred to as unphysical (they travel faster than the speed of light) and

can thus not be accepted in a physical theory. In that sense bosonic string theory

is non-physical and must be discarded. In previous chapter though the introduc-

tion of supersymmetry guaranteed that these negative norm states vanished from

the spectrum. So this problem can be sorted out if there exists a supersymmetric

generalization of the bosonic string theory. This theory does indeed exist and goes

under the name of superstring theory. Next section treats superstring theory but,

although unphysical, bosonic string theory gives a lot of important insights even

to superstring theory so there are a couple features that ought to described before

turning the attention to superstrings. The massless spectrum of bosonic string the-

ory, which is the �rst excited state because the vaccum is a tachyon, will di�er for

closed strings and open strings. For the open bosonic string with only one mode the

massless sector will contain only a vector �eld Am. The closed bosonic string with

two separate modes have a broader massless sector with a full 2-tensor in the spec-

trum. This tensor can be decomposed into irreducible parts which are the traceless

symmetric part, gmn, the anti-symmetric part, Bmn and the trace part, �. These are

referred to as the metric, the two-form and the dilaton respectively. The content of

the massless spectrum makes it possible to couple the closed strings to these �elds.

The closed string can thus be coupled to the metric, the two form and the dilaton

�eld [59]. The couplings of the �rst two �elds are easy and look like

Sg = � 1

4��0

Z
d2�

p
hhmn@mX

m@nX
ngmn; (5.10)

SB = � 1

4��0

Z
d2��mn@mX

m@nX
nBmn: (5.11)

The dilaton coupling is not as transparent but from [59] one obtains

S� =
1

4�

Z
d2�

p
hR(2)�; (5.12)

where R(2) is the two-dimensional Ricci scalar. This last term is itself not conformal

invariant, as is the case for the other terms, but as it is of higher order in �0 it

enables for a conformally invariant quantum theory. In the two-dimensional theory

these background �elds, gmn; Bmn and �, are considered as coupling constants

and conformal invariance at the quantum level forces �-functions of these coupling

constants to vanish. For details see [59]. As these coupling constants merely are

�elds these �-functions are referred to as �-functionals. These can be calculated and
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are to lowest order in �0

�(g)

mn = Rmn � 1

4
HmpqHn

pq + 2rmrn�+ O(�0); (5.13)

�(B)

mn =
1

2
rpHpmn � (rp�)Hpmn +O(�0); (5.14)

�(�) = �R+
1

12
H2 � 4rprp�+ 4rp�rp�+ O(�0); (5.15)

where R�� is the Ricci tensor of space-time and H(3) is the �eld strength of the two

form, i.e. H(3) = dB(2). So as conformal invariance at the quantum level forced these

�-functionals to vanish it is seen that the quantized string makes the background

�elds dynamical. The dynamics is to lowest order in �0 described by the Einstein

equations of motion. These equations of motion can equivalently be obtained by

minimizing the action

I =
1

2�2

Z
d26X

p
ge�2�(R+ 4(@�)2� 1

12
H2 +O(�0)); (5.16)

where � is the gravitational coupling constant. Keeping only the �rst order terms

this action is referred to as the low energy e�ective action for the background �elds,

in which the closed bosonic string can propagate.

5.2 Superstring

Extending the bosonic string to a supersymmetric theory will undoubtedly bring up

questions regarding the embedding procedure associated with an area minimizing

action. From the study of p-branes which is a generalization of the string concept, it

is clear that supersymmetry implies supersymmetry. By this is meant that if we start

with a superstring which possesses world-sheet supersymmetry, it can only propagate

in a supersymmetric background. Now there are three di�erent approaches to handle

the embedding procedure of the string.

� The Neveu{Schwarz{Ramond (NSR) approach [60, 61, 62, 63], where one starts

with manifest world-sheet supersymmetry and embeds it into ordinary target

space. The target space supersymmetry arises through the so called GSO

projection which is required for modular invariance and for obtaining the right

fermionic degrees of freedom.

� The Green{Schwarz (GS) approach [64, 65], where instead the metric from

a manifest supersymmetric target space is pulled back to an ordinary world-

sheet. The world-sheet supersymmetry is obtained through a symmetry known

as �-symmetry which reduces the number of supersymmetry generators of

target space by half.

� The doubly supersymmetric approach, where both the world-sheet and the

target space is taken to be manifestly supersymmetric (superspace formulated).
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The embedding procedure is done through a supersymmetric extension known

as superembedding. The right degrees of freedom is here obtained through

the so called embedding condition which paper II for instance deals with quite

thoroughly. For more references on the subject see paper II.

This procedure restricts the possible target space dimensions already at the clas-

sical level. The superstring can at the classical level only exist for D = 3; 4; 6; 10.

Following the procedure of the bosonic string the conformal anomalies can only be

removed for D = 10. We say that the critical dimension of the superstring is 10.

See [66].

There are �ve di�erent consistent superstring theories which will be looked at.

By consistent is meant quantum mechanically consistent, i.e., they do not have any

anomalies. The classical action for the superstring in the NSR approach in Wick

rotated form with complex coordinates reads

S = � 1

4��0

Z
d2z(�@Xm@Xm �  m �@ m � � m@ � m) (5.17)

where  m and � m are the components of a two dimensional Majorana spinor in

two dimensions, i.e.

 m =

�
 m

� m

�
(5.18)

The equations of motions for the fermionic �elds become

�@ m = 0 (5.19)

@ � m = 0 (5.20)

which implies that their components are holomorphic and anti-holomorphic func-

tions respectively. To solve these equations of motion two boundary conditions are

needed. Again there are some di�erences between the open and closed sectors, so

they are treated separately. By varying the action the total derivatives of the fermi-

onic �elds leads to a boundary term in the form  m� m � � m� � m. The boundary

conditions must be imposed such that this boundary term vanishes. For the open

string there are two possiblities, namely

 m(0) = � m(0)  m(�) = � m(�) (R)

 m(0) = � m(0)  m(�) = � � m(�) (NS)
(5.21)

The �rst type of boundary condition is called Ramond (R) boundary condition and

the second Neveu-Schwarz (NS) boundary condition. The closed string on the other

hand has two independent sectors in the left and right moving modes. Here one can

therefore have periodic (R) and anti-periodic (NS) boundary conditions in the left

and right moving sectors independently. This leaves us with a total of four di�er-

ent sectors namely: R-R, R-NS, NS-R and NS-NS. The massless spectrum of the
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superstring will di�er between the various cases but all will be built from the same

constituents. The tachyon in the spectrum is removed by demanding supersymme-

try in target space. There were three di�erent approaches to obtaining this of which

the above is the (NSR) approach with manifest world-sheet supersymmetry. Here

one must impose the so called GSO projection in order to remove the tachyon and

obtain a supersymmetric background. The other approaches will equivalently lead

to the same supersymmetric background. So the ground state is in fact a target

space spinor (or cospinor) lying in the Ramond sector, and there is a vector lying in

the NS sector, i.e.

8v � 8s; or 8v � 8c (5.22)

for the open string. For the closed string the left and right moving modes are treated

separately which brings the possible representations

(8v � 8s)
 (8v � 8s) or (8v � 8s)
 (8v � 8c) (5.23)

of its spectrum. The �rst representation above is that of N = 1 SYM in D = 10

and will not give a consistent string theory by its own. The two latter cases leads

both to consistent string theories with N = 2 target space supersymmetry although

the �rst is chiral, N = (2; 0), and the latter is non-chiral, N = (1; 1). These will be

referred to as type IIB and type IIA string theory respectively.

5.2.1 Type II superstrings

As was previously seen the representations of type IIA and type IIB superstrings

were those of

(8v � 8s) 
 (8v � 8c); (IIA)

(8v � 8s) 
 (8v � 8s): (IIB)
(5.24)

To investigate the �eld contents of these representations they are decomposed into

their irreducible parts. Both type IIA and type IIB have a common NS-NS sector [64]

which can be decomposed into

8v 
 8v = 1 � 28� 35v = �� B(2) � g�� (5.25)

This spectrum is identical to that of the bosonic string, but now in a di�erent target

space dimension. It thus contains one scalar �eld referred to as the dilaton, one

abelian two-form and a metric. These are of course all bosonic but are not the only

bosonic constituents of the spectrum. There are also additional bosonic degrees of

freedom coming from the R-R sector and are di�erent for type IIA and type IIB.

8c 
 8s = 8v � 56v = C(1) � C(3); (IIA)

8s 
 8s = 1 � 28� 35s = C(0) � C(2) � C+
(4) ; (IIB)

(5.26)
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So there is a one-form and a three-form in the type IIA spectrum and a scalar, a

two-form and a self-dual four-form in the type IIB spectrum. (One should rather

say a four-form with a self dual �eld strength �dC+
(4) = dC+

(4) .) The fermionic degrees

of freedom are obtained from the NS
R and R
NS sectors.

8v 
 8c = 8s � 56c = �� �  
�
_�;

8v 
 8s = 8c � 56s = � _� �  
�
�:

(5.27)

Put together these representations are seen to be nothing but those ofN = (1; 1) and

N = (2; 0), D = 10 supergravity (also called type IIA and type IIB supergravity).

The dynamics of these �eld are again obtained by requiring conformal invariance of

the string action at the quantum level. This puts constraints on the �-functionals

which must vanish. As was seen in the bosonic string theory this implication lead

to Einstein equations of motion and so is the case for superstring theory as well.

To lowest order in �0 these equations of motion are derivable from the supergravity

actions presented in previous chapter. The type IIA and type IIB supergravity

actions are therefore referred to as the low energy e�ective actions of type IIA and

type IIB superstring theory.

5.2.2 Type I superstring

From the supergravity representations in D = 10 there was also seen to exist an

N = 1 supergravity representation in D = 10. A not too wild guess would therefore

make us believe that there should exist a type I superstring with N = 1 target space

supersymmetry. Although not that easily obtainable there indeed exists a type I

superstring [46] which can be derived from the type IIB superstring by projecting out

half of the degrees of freedom in such a way that only the left-right symmetric parts

remain. The projection operator contains an orientifold operation often denoted 


which reverses the role of the left and right moving sectors. This will lead to an

unoriented theory and its spectrum can be obtained from that of type IIB by keeping

left-right symmetric parts. These are the representations of the graded symmetric

parts, i.e.

(8v 
 8s)�̂(8v 
 8s) = (8v � 8v)� (8s ^ 8s)� (8v 
 8s); (5.28)

The �eld content of these representations is

(8v � 8v) = 1 � 35v = � � g�� ;
(8s ^ 8s) = 28 = C(2);

(8v 
 8s) = 8c � 56s = � _� �  ��:
(5.29)

and again these are seen to be exactly those of the type I supergravity representation

seen in table 4.4. This theory is not consistent by itself though because it contains

conformal anomalies. These anomalies can be getting rid o� by including an open

string sector, which lies in the representation of N = 1 SYM in D = 10, with Chan-

Paton gauge group SO(32). This means that the open string carries an SO(32)
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charge at its endpoints. Put together the theory is consistent and the dynamics of

these background �elds can, in the low energy limit, be obtained from the type I

supergravity action presented in previous chapter. See [66] for more details.

5.2.3 Heterotic superstrings

There are yet two other consistent superstring theories, namely the two heterotic

superstrings with gauge groups SO(32) and E8�E8 respectively, see Refs. [67, 68].

The basic features of the heterotic strings come from the fact that the left and right

moving modes are independent of each other (except for the zero modes) and can

thus be treated separately. In fact the right moving modes can be let to be those

of a 10-dimensional superstring while instead the left moving modes are let to be

those of a bosonic string in 26 dimensions compacti�ed in a certain way down to 10

dimensions. The resulting bosonic modes from such a compacti�cation will split into

10 transverse and 16 parallel modes of the compacti�cation manifold. Here the 10

transverse bosonic coordinates will end up in a 8v representation and the other 16

coordinates will parametrize the internal compacti�cation manifold. The key issue

is therefore to classify all kinds of internal manifolds which are consistent with the

imposing of conformal invariance at the quantum level. In fact there is only one

type of internal manifolds possible and that is the tori constructed through

T = R
16=�16 (5.30)

where � must be an even Euclidean self-dual lattice. The requirement of a Euclidean

self-dual lattice is the same as the requirement of modular invariance. Only two such

16-dimensional lattices exist and those are the weight lattice of Spin(32)=Z2 and the

root lattice of E8�E8. These possible cases lead to the only two consistent heterotic

superstrings and the representations of these groups are taken to be the adjoint

representation and the (248; 1)� (1; 248) respectively, both having the dimension

496. Combining this with the left-moving modes gives us the massless spectrum of

the two possible heterotic superstrings, namely

(8v � 8c) 
 (8v � adjSO(32)) (5.31)

(8v � 8c) 
 (8v � [(248; 1)� (1; 248)]) (5.32)

where

(8v � 8c)
 8v = 1 � 28 � 35v � 8s � 56c = ��B(2) � g�� � �� �  
�
_� (5.33)

is the representation of N=1 supergravity in D=10 seen in Table 4.4 and

(8v � 8c) 
 adjSO(32) (5.34)

(8v � 8c) 
 [(248; 1)� (1; 248)] (5.35)

are the representations of N=1 super Yang-Mills in D=10 with gauge groups SO(32)

and E8 � E8 respectively. These are also found in Table 4.4. Noticeable is that the
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Theory Type IIA Type IIB Type I Het SO(32) Het E8 �E8

World-sheet closed closed open, closed closed closed

topology oriented oriented unoriented oriented oriented

Gauge group - - SO(32) SO(32) E8 � E8

type Chan-Paton Cur. alg. Cur. alg.

Susy N = (1; 1) N = (2; 0) N = 1 N = 1 N = 1

Susy gen. 32 32 16 16 16

Irred. reps 28 = 256 28 = 256 8� 24 = 128 8� 24 = 128 8� 24 = 128

size 24 � 496 24 � 496 24 � 496

Table 5.1: The �ve consistent perturbative superstring theories

spectrum of the SO(32) heterotic string is precisely that of the type I superstring

although the gauge group here does not arise from charged endpoints as there are

no open strings in the heterotic theory. Nevertheless these two theories will be seen

to be dual to each other in the upcoming chapter.

5.2.4 Superstring summary

So we have seen that there are �ve consistent superstring theories. A sum up is

made in Table 5.1 which contains the topology and the irreducible representation

sizes etc. Although the above treatment was done purely through the NSR approach

it must be stressed that the doubly supersymmetric approach is the most natural in

a geometrical picture. This approach is the only one which trivially generalizes to

objects of higher dimension, p-branes. The GS approach will also work but the �-

symmetry will be more di�cult to see than in the doubly supersymmetric approach.

The branescan which will be discussed in next chapter will be an extension of the

possible target space dimensions for various branes. For the superstring the possible

target space dimensions were seen to be 3, 4, 6 and 10, but for other branes the

target space dimensions will be seen to di�er. By quantizing the superstring only

the 10-dimensional theory remained as a consistent theory. See [66] for details.

Another interesting question in the NSR approach is what happens if we impose

higher order supersymmetry. Here the only possibilities are N = 2 and N = 4

in order to keep the (super-)conformal symmetry. These theories turn out to be

quite uninteresting from a physical point of view due to their uninteresting critical

dimensions (see [66] for details).
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M-Theory

Here will be brought a brief review of the collecting theory dubbed M-theory. The

letter M stands for something like "mother" or "membrane". The reason for why

it is sometime referred to as membrane theory is that it in the low energy limit

looks like D = 11 supergravity. So what is then M-theory? The historical origin

lies in the discovery of various dualities in string theory in the mid 90's, see [69].

The idea to these came from the weak-strong duality in various �eld theories as

previous chapters discuss. In string theory various discoveries lead to the conclusion

that the �ve consistent perturbative string theories no longer should be seen as

individual di�erent theories but instead as if all were originating from the same

theory which should be called M-theory. The reason for conjecturing this is of

course the di�erent dualities discovered which beside the string theories also contain

D = 11 supergravity. As was seen in previous chapters all the string theories can be

seen to live in ten dimensions with supergravity as their low energy backgrounds.

Low energy in that it is the lowest order terms in �0. The basic procedure in studying

duality properties is Kaluza{Klein reduction. We will see that these reductions will

split the �eld representations of a higher-dimensional theory into new irreducible

representations in the lower-dimensional theories and upon this see that di�erent

string theories and eleven-dimensional supergravity will map onto new equivalent

theories in lower dimensions. The probes for this procedure are basic solutions to

the low energy supergravity theories, called p-branes. The reason for their name

is that they generalize the string, which would be a 1-brane, to higher-dimensional

objects. The membrane would be a 2-branes while the point particle would be a

0-brane. These objects will be studied in next section.

For more detailed reviews on the subject the reader is referred to Refs. [70, 69,

71, 72, 73].

75
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6.1 p-Branes

Here will be focused on some classical solutions to the equations of motion of the

low energy supergravity theories, called p-branes. p-branes are p-dimensional objects

propagating in time, and thus generalize the introduction of strings as 1-dimensional

objects to that of arbitrary higher-dimensional objects. It might seem intuitive to

introduce all types of higher dimensional objects, and not only strings, upon leaving

the old point of view that particles should be pointlike objects. It must be stressed

though, that the p-branes encountered here do not stand entirely on equal footing

with the strings because they are only classical solutions to the low energy e�ective

actions derived from string theory and actually only up to zeroth order in �0. There

are thus two immediate questions one might ask, namely what if one started with

p-branes as fundamental objects, what theories would one get and which would their

critical dimensions be? The second is will these p-brane solutions exist at the non-

perturbative level when taking in account for all orders in �0? The answers to these

questions are yet not de�nite but the last years have given us a very good insight in

the questions and although the answers only lie at the conjectural level, the belief

concerning the last question is that the picture is correct to all orders. As has been

seen the superstrings can only propagate in 10 dimensions as fundamental objects

at the quantum level. In the classical regime, though, they can exist in 3, 4, 6

and 10 dimensions. In next subsection it will be clear that the classical dimensions

for the membrane are instead 4, 5, 7 and 11 and although there exist no quantum

theory for the membrane yet it would not be to surprising if this quantum theory

eventually picked out only one of these dimensions and then preferably 11 which is

the dimension of M-theory.

As the p-brane solutions are extreme supergravity black holes and therefore BPS

states which breaks half the supersymmetry the �rst acquaintance would preferably

be through ordinary black holes. In next subsection the concepts of black holes

will be reviewed, and standard quantities such as inner and outer horizon, surface

gravity, temperature and entropy will be introduced. These concepts follow all types

of p-brane solutions. In this subsection the Reissner{Nordstr�om black hole will be

thoroughly presented and typically its extreme version where the mass is equal to

the charge. This black hole is charged under a U(1) vector �eld and would in the

context be a 0-brane. In next subsection this will be generalized when the p-branes

will be seen to be charged under a U(1) (p + 1)-form instead. Then the focus will

be put on the brane scan which is where the possible existing branes in the various

theories is derived. This will be solidly based on supersymmetry and dimensional

analysis and is not a full proof of their existence, but today all types of solutions

have been found.
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6.1.1 Black holes

In four-dimensional Einstein gravity, black hole solutions have thoroughly been stud-

ied in the 60's and 70's, but the �rst classical solutions are already from 1916 when

Schwarzschild �rst found his well known spherically symmetric one-parameter solu-

tion. Later in 1916 Reissner found a two parameter solution of a charged black hole.

This was also independently discovered by Nordstr�om in 1918 and is today known

as the Reissner-Nordstr�om black hole. It was not until 1963 that Kerr found yet

another two-parameter solution of a rotating black hole which was generalized by

Newman et al. in 1965 to build a complete three-parameter solution of a charged,

rotating black hole. All these solution are found in the D = 4 dimensional Einstein-

Maxwell theory given by the action

SEM =

Z
d4x

p�g(R� 1

4
F��F

��) (6.1)

The explicit three parameter solution can be found in [74] and is omitted because it

is a bit out of the context of this subsection. More interesting is the thermodynamic

theory of black holes which was mostly due to Bekenstein and Hawking, who saw

that quantum mechanically black holes were not that black after all. To see this �rst

some attention is put to what relevant quantities a black hole possess. First of all

the three parameters of the Newman et al. solution is best seen as the mass,M , the

angular momentum, J , and the charge, Q. In studying a black hole's thermodynamic

properties there are three characteristics of a black hole that are of great importance,

namely the surface gravity, �, (not to be confused with the Einstein constant �

given by 2�2 = 16�G), the angular velocity, 
, and the electric potential at the

event horizon, �. These are of course all derivable from the metric and the electro-

magnetic vector potential given by the three-parameter solution. They can be found

to be

� =
4�

A
(r+ �M) (6.2)


 =
4�

A

J

M
(6.3)

� =
4�

A
Qr+ (6.4)

where A is the area of the horizon given by

A = 4�(r2+ +
J2

M2
) (6.5)

and the inner and outer horizon radii are

r� =M � (M2 � J2

M2
� Q2)1=2 (6.6)

The surface gravity measures the force by which a unit test mass at the horizon

must be exerted with at in�nity in order to stay in place. This force is of course
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redshifted all the way out to in�nity so the force needed at the horizon is in�nite.

Now a no hair theorem states that the only information contained in a black hole

could be that of the three quantities,M;J;Q, so two black holes with the same mass,

angular momentum and charge would be indistinguishable from each other even if

one was formed by a collapsing star and the other by a giant imploding submarine.

Now Bekenstein noted that there was a relation between two nearby solutions

dM =
�

8�
dA+ 
dJ +�dQ (6.7)

which looked very similar to the �rst law of thermodynamics

dU = TdS � pdV (6.8)

This led Bekenstein to suggest that the black hole had a temperature given by some

factor times the surface gravity and that the black hole had an entropy proportional

to the area. There was a paradox before the discovery of a black hole's entropy

because the second law of thermodynamics which states that the entropy always

increases in a closed system did not hold in a theory with gravity. The classical area

law theorem of a black hole states that the area always increases and thus opens

for the possibility of the black hole to reduce the entropy of the outer region. This

would not be compatible with the second law of thermodynamics. Now if one assigns

an entropy to the black hole which is proportional to the area of its horizon, the

total entropy, given by the entropy of the black hole plus the entropy of the outer

region, would again obey the second law. In 1974 Hawking derived the temperature

by a semi-classical analysis of the emission of particles near a black hole and found

it to be

T =
�

2�
(6.9)

This should be compared to the Unruh e�ect found in 1976. Here Unruh showed

that an accelerating observer in ordinary Minkowski space time feels that he is in a

thermal bath with temperature proportional to the acceleration

T =
a

2�
(6.10)

Again this is on par with the principle of equivalence. It can also be shown that

a free falling observer in a black hole background (as, indeed, in any background)

does not feel any temperature. Another interesting feature that arose through these

calculations was that the temperature was independent of the number of di�erent

particles created. Following Bekenstein's reasoning this leads to the entropy of the

black hole

S =
A

4
(6.11)
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A couple of implications follow from this discovery. The �rst is of course that a

black hole does indeed have hair, there must be some microstructure that holds

information and gives rise to this entropy. Secondly, this entropy law says that

entropy is increased by clumping in a theory with gravity rather than as in non-

gravitating systems where particles with a uniform distribution gives the highest

entropy. The third observation is that black holes have negative speci�c heat which

makes it unstable in a heath bath, either it burns up or cools down to zero.

Taking a look at the expression for the surface gravity one sees that there are

possible con�gurations where the surface gravity vanishes even with the parameters

di�erent from zero. These are the so called extreme black holes. We will take

a closer look at the Reissner-Nordstr�om black hole which means that we put the

angular momentum to zero. Here the solutions can be put in a more pleasant form

and metric is

ds2 = ��

r2
dt2 +

r2

�
dr2 + r2d
2 (6.12)

and the electro-magnetic vector potential reads

A =
Q

r
dt: (6.13)

The introduced parameter � is given in terms of M and Q by

� = r2 � 2Mr+ Q2 = (r� r+)(r� r�) (6.14)

with the inner and outer radii now taking the simple form

r� =M �
p
M2 � Q2: (6.15)

For these horizons to exist we get a lower bound for the mass

M2 � Q2 (6.16)

which look similar to the Bogomol'nyi bound seen in di�erent �eld theories earlier on.

The extreme Reissner{Nordstr�om solution is then found simply by taking M =j Q j
and the metric reduces to

ds2 = �
�
1� M

r

�2

dt2 +

�
1� M

r

��2
dr2 + r2d
2

2: (6.17)

The extreme Reissner{Nordstr�om metric is of course asymptotically Minkowski, sta-

tionary and spherically symmetric. To determine the asymptotic metric in the near

horizon limit, r ! M , it is convenient to introduce a new radial coordinate R

given by MR =
�
1� M

r

�
. Taking only into count the leading terms in R the

near-horizon metric of the extreme Reissner{Nordstr�om black hole looks like the

Robinson{Bertotti metric

ds2 �M2

�
�R2dt2 +

dR2

R2

�
+M2d
2

2: (6.18)
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This is nothing but the metric of a two dimensional anti-de Sitter manifold times a

two-sphere, AdS2�S2, so we see that the solution interpolates between a Minkowski

vacuum and AdS2�S2. This is the �rst case of what can be seen as a 0-brane which
is BPS in that that it satis�es the lower bound of the mass. When looking at the

Reissner{Nordstr�om black hole as a solution toN = 2 supergravity in D = 4, we can

see this BPS state as a soliton. From the relation between the surface gravity and the

Hawking temperature it is clear that these BPS black holes have zero temperature

and are thus stable.

6.1.2 Typical p-brane solutions

In the various compacti�cation schemes appearing in the Kaluza{Klein reductions

of the supergravity theories at hand there are a lot of �elds appearing. Although

this severe complexity in the ansatz for a p-brane solution one can put most of these

�elds to zero and just look at one scalar �eld together with one anti-symmetric

tensor �eld. The action describing the dynamics of these �elds can in the Einstein

frame be put to look like

SD[g; �; A] =

Z
dDx

p�g
�
R� 1

2
(@�)2 � 1

2(d+ 1)!
e���F 2

(d+1)

�
(6.19)

where F(d+1) = dA(d) is the �eld strength of a d-form potential A(d), � is the dilaton

�eld and R is the scalar curvature. d = p + 1 will be the total dimension of the

p�brane including the time direction. Furthermore, � = �(d;D) is a numerical

constant which depends on the dimension of both the space and the brane. For a

single �eld p-brane it takes the value

�2 = 4� 2d ~d

D � 2
(6.20)

where the notation ~d = D � d� 2 for what will be called the dual worldvolume

dimension. If one rewrites the F 2 term as F ^ �F instead it is clear that the choice

of potential is not that obvious. One could equally choose a potential to the dual

�eld, i.e. �F( ~d+1) = d ~A ~d. This ambiguity is the reason for the p-branes to come in

pairs. There is of course a great resemblance with ordinary gauge theory where we

saw how magnetic monopoles appeared in a dual fashion to the electric monopoles.

Here the magnetic monopoles were solitonic objects while the electric monopoles

were fundamental objects. This will turn out to be similar in some cases with p-

branes where one object will be of fundamental nature and therefore referred to as

electrically charged while the dual will be solitonic and referred to as magnetically

charged. (D-branes which are all solitonic still come in pairs but the role of what is

fundamental and what is not is blurred.) The explicit electric and magnetic p-brane



6.1 p-Branes 81

solutions to the equations of motion derived from the above action can be written

g = ��
~d

D�2dx2 +�
d

D�2dy2 (6.21)

e� = ���
2 (6.22)

F =

(
� ^ d��1 electric

�id��0 magnetic
(6.23)

where the harmonic function � = �(r) with r :=
p
�m0n0y

m0yn
0

is given by

� = 1 +
�a
r

� ~d
(6.24)

Characteristic for these p-brane solutions is that they break the PD symmetry down

to Pd � SO(D� d). Recall that this is nothing but the characteristics of an almost

product structure. By letting I = d�d0 we have a suitable almost product structure
compatible with the symmetry breaking of the brane solution. Now the Nijenhuis

tensor of this APS vanishes which tells us that both the brane and the complemen-

tary distributions are integrable. The consequence of this is that the brane in this

case can be seen as a foliation instead of merely an embedding. There have recently

come several papers on rotating branes [75, 76, 77, 78, 79, 80, 81] where it is clear

that the solutions again are compatible with an APS but where the brane no longer

is integrable. From these solution and by just looking at the general splitting of the

curvature components due to an APS it is clear that gauge �eld charged black holes

in the dimensionally reduced space will correspond to rotating branes in the total

space. When it comes to black holes charged under anti-symmetric tensor �elds one

can make the conjecture that these correspond to non-integrable distributions in

superspace. See paper IV and V for the structure.

From the equations of motions for the anti-symmetric tensor �eld and the Bianchi

identity

d � (e�a�F ) = �J (6.25)

dF = �K (6.26)

where J(d) is a d-form current associated with the p-brane source, K( ~d) is the
~d-

form "magnetic" current. The electrically charged p-brane in D dimensions can be

encircled by a (D�d�1)-dimensional sphere. It carries a conserved Noether charge

qe =

Z
M(D�d)

�J(d) =
Z
SD�d�1

e��� � F(d+1) (6.27)

As the p-branes solutions indeed are BPS states as they break half the supersym-

metry1 which of course not is clear from the above treatment. Their ADM mass per

1To be more precise they do in fact break a lot more than half the supersymmetry. They break

the local supersymmetry of the supergravity theory down to a global supersymmetry with half the

number of supersymmetry generators.
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unit p-volume is given by

Md � jqeje��0=2 (6.28)

for the electrically charged p-brane. �0 denotes the vacuum expectation value of

the scalar �eld. In the dual picture the solitonic ~p-brane can be encircled by a

(d + 1)-dimensional sphere and carries a magnetic charge which is of topologically

origin

qm =

Z
M(d+2)

�K( ~d) =

Z
Sd+1

F(d+1) (6.29)

Magnetic charges can be supported without sources at the core, so the solitonic ~p-

branes are solutions to the equations of motion of the e�ective action SD(d) alone.

The solitonic ~p-brane also preserves one-half of the underlying supersymmetry, but

saturates another type of bound for the ADM mass per unit ~p-volume

M ~d � jqmje�a(d)�0=2 (6.30)

Here one should notice the di�erence in sign which in string theories where the

string coupling constant depends on the dilaton �eld in a similar fashion tells us

that the mass of the magnetically charged solitonic p-branes depends on the inverse

of the coupling constant to some power. This is what makes them lie outside the

perturbative spectrum as their masses blow up as one does perturbations in a small

coupling constant.

Before proceeding with the actual brane scan the membrane and the 5-brane in

D = 11 supergravity will be investigated as an example of two dual pairs of p-branes

discussed above. Here the treatment is even a bit easier because there exist no scalar

�eld in the eleven dimensional supergravity theory. Here will also be seen that the

p-brane solutions can be seen as an interpolation between two di�erent topologically

inequivalent vacua of the supergravity theory. The interpolation will be seen to

between an anti-de Sitter space times a hypersphere and ordinary Minkowski space.

� The fundamental M2-brane

From the general solution we can just read o� the solution of the M-theory

membrane by identifying D = 11; d = 3; ~d = 6

ds2 = �� 2
3dx2 +�

1
3dy2 (6.31)

with

� = 1 +
�a
r

�6
(6.32)

The potential reads

A(3) = � 1

3!
��1�mnpdx

m ^ dxn ^ dxp (6.33)
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Minkowski

Anti de-Sitter

Figure 6.1: The Vacuum Interpolation of the Supermembrane Geometry.

It is now interesting to look at the coordinates of this solution picked from

the general above. It certainly looks as if the M2-brane metric was singular at

r = 0. This singularity though, is nothing but a coordinate singularity and the

hypersurface r = 0 is nothing but the event horizon of the brane. This can be

seen by introducing a Schwarzschild-type coordinate �, de�ned by r6 = �6�a6.
The solution now reads

ds2 = �
2
3dx2 +��2d�2 + �2d
2

7 (6.34)

whith

� = 1�
�a
r

�6
(6.35)

and the potential reading A(3) = � 1
3!��mnpdx

m^dxn^dxp. The new Schwarzschild-

type coordinate makes the hypersurface � = a the horizon instead of r = 0 in

the original case. To get the picture of the membrane as a solution interpolat-

ing between two topologically inequivalent vacua it is preferable to introduce

yet another set of coordinates de�ned by

R3 = 1�
�
a

�

�6

(6.36)

With this new radial coordinate the metric looks like

ds2 = ds2asym + a2
�

1

(1�R3)1=3
� 1

��
4
dR2

R2
+ d
2

7

�
(6.37)
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where

ds2asym = R2dx2 + 4a2
dR2

R2
+ a2d
2

7 (6.38)

In this form the metric of the M2-brane reveals the interpolation between the

two topologically inequivalent vacua. As R ! 1 which correspond to � ! 1
which is at spatial in�nity the solution becomes 
at D = 11 Minkowski. In

the other limit when R! 0 which is at the horizon � = a the M2-brane metric

becomes instead the standard metric on AdS4�S7. It should be stressed that

the horizon R = 0 is not a singularity but the real singularity is encountered

at the origin � = 0. It is here the embedding of the membrane can be put as

a source term.

� The solitonic M5-brane

The M5-brane solution follows the standard prescription of p-brane solutions

as the M2-brane did. The explicit solution can be read o� the from the general

solution now with D = 11; d = 6; ~d = 3

ds2 = �� 1
3dx�dx���� +�

2
3 dymdyn�mn (6.39)

with

� = 1 +
�a
r

�3
(6.40)

The �eld strength taken in component form reads

H(4) = � 1

4!
(@m0�)�

m0n0�n0p0q0r0s0dy
p0 ^ dyq0 ^ dyr0 ^ dys0 (6.41)

In a similar procedure as for the membrane we introduce an interpolating

coordinate R, now de�ned by

r =
aR2

(1� R6)1=3
(6.42)

After this substitution the M5-brane metric reads

ds2 = R2dx�dx� + a2
�

4R�2

(1�R6)8=3
dR2 +

1

(1�R6)2=3
d
2

4

�
(6.43)

The M5-brane can now be seen to interpolate between 
at D = 11 Minkowski

space as R ! 1, and AdS7 � S4 as one approaches the horizon. So we have

seen that both the fundamental M2-brane and the solitonic M5-brane geome-

try interpolates between two of the vacua of eleven-dimensional supergravity.

This picture is illustrated in 6.1. Interesting to see is that this metric is com-

pletely symmetric under the discrete isometry R ! �R. One can therefore

analytically continue the exterior metric through the horizon, at R = 0, and

go over to negative values of R. But then the geometry will look completely

the same on the inside as on the outside. There is thus no singularity behind

the horizon in the M5-brane case but the solution is completely solitonic.
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6.1.3 The Brane-scan

The brane scan consists of an analysis of the possible presence of di�erent kinds of

p-branes in the various supergravity theories. It is solidly based on the analysis of

supersymmetry properties in di�erent dimensions. There are four di�erent types

of branes, these are the scalar, vector, tensor and gravitational branes. These will

here be referred to as Sp-, Dp-, Tp- and Gp-branes repectively2. The brane scan

is a classi�cation of what branes can exist in what dimensions and in what theories

in particular. It is again convenient to introduce d = p + 1 as the dimension of

the embedded p-brane in space-time dimension D. A list of all acceptable branes

except for the gravitational ones can be found in Fig. 6.2. These refer to which type

of multiplets are to be embedded into target space. In Fig. 6.2 account has only

been taken to in what possible dimensions there is a match between the number of

fermions and the number of bosons. This does therefore only give us a necessary

condition but not a su�cient condition for their existence. The next step is to look at

the supersymmetry algebra and see what possible central charges there are. Finally

one must of course show that the explicit solutions exist through the equations of

motion but today we know that all compatible with the supersymmetry algebra do

exist. But �rst let us take a look at how to get the brane scan.

� Sp-branes

To match the bosonic and the fermionic degrees of freedom in the scalar mul-

tiplet case we �rst note that the complementary dimension of the embedding

gives the number of scalar degrees of freedom and that �-symmetry reduces the

fermionic degrees of freedom by half which the fermionic equations of motion

also does. To match these we are left with the equation

D � d = 1

4
MN (6.44)

where M is the irreducible spinor dimension in D-dimensional Minkowski

space, and N is the number of supersymmetries. M can be read o� from

Table 4.1 and N is restricted to N = 1 in all cases but the string case where

the independence of the left and right moving sector gives us a possibility of

not only N = 1 but also N = 2.

� Dp-branes

This is the case when the p-brane is represented by a vector multiplet. Here

we again have D � d scalars but here is also a world-sheet vector with d � 2

degrees of freedom and the imposed equality becomes instead

D � 2 =
1

4
MN (6.45)

2These categories refer to a �xed dimensionality. Upon dimensional reduction and compacti�-

cation these categories can mix.
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Figure 6.2: The brane-scan.

Here we see that we have no restriction on the value of d but only on the

dimension of the target space which will coincide with those for which we have

possible string theories, due to the number 2 in the equation above, namely

D = 3; 4; 6; 10.

� Tp-branes

The Tp-branes are represented by a world-sheet tensor multiplet. As before

there are D� d scalars but now also bosonic degrees of freedom from a tensor

�eld. The question is what tensor �eld there can be. This question can be

solved by looking at what possible tensor multiplets there exist in the repre-

sentation table (4.4). Here it is clear that there is only one possibility and that

is for d = 6 which means that we are restricted to a 5-brane. The degrees of

freedom for the self dual tensor in 6 dimensions are 3 and the imposed equality

turns out to be

D � 3 =
1

4
MN (6.46)
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So the possible T5-branes can exist in the same dimensions as the membrane

though we are of course restricted to dimensions D > 6. This leaves us with

the only possibilities D = 7; 11.

� Gp-branes

The possible Gp-branes was not illustrated in the picture but will nevertheless

be listed here. The branes in the di�erent theories are in correlation to the

existence of p-form central charge in the supersymmetry algebra. But what is

characteristic for all these algebras is the existence of the momentum operator

P which can be shown to represent a type of string called the pp-wave. Its

dual is a (D�5)-brane which in fact is a Kaluza-Klein monopole. So for D � 5

there are two new types of branes referred to as gravitational branes due to

carrying the electric and magnetic charge of the graviphoton respectively. See

[82].

These are the possible branes from a dimensional point of view, (actually there can

be some other 9-branes, see [82]), but the next step is now to look at the presence

of their respective central charges in the supersymmetry algebra[83]. Again the

di�erent theories at hand are the various supergravity theories which represent the

low energy e�ective actions of string theory and M-theory.

� D=11 SUGR

The supersymmetry algebra in ordinary D = 11 supergravity takes the form

fQ�; Q�g = (�a)��Pa + (�ab)��Zab + (�abcde)��Zabcde (6.47)

From the algebra it follows that there exist one membrane and one 5-brane in

the spectrum. These are of course the fundamental M2-brane and the solitonic

M5-brane discussed earlier see Refs. [84, 85]. From the brane scan one �nds

that the M2-brane is represented by a scalar multiplet while the M5-brane is

represented by a tensor multiplet. From the algebra one can also track down

the gravitational branes which are G1-brane and its dual G6-brane. (There is

actually an extra 9-brane conjectured in [82] but it is not present as a central

charge in the algebra.)

� Type IIA

In the type IIA supergravity the supersymmetry algebra is just the dimensional

reduction of D = 11 SUGR to D = 10, and looks like

fQ�; Q�g = (�a)��Pa + (�11)��Z + (�a�11)��Za + (�ab)��Zab +

+(�abcd�11)��Zabcd + (�abcde)��Zabcde (6.48)

Here we of course read o� the fundamental string and its dual the solitonic S5-

brane. From the algebra together with the brane scan one also �nds Dirichlet
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branes of the types D0; 2; 4; 6; 8 found in Refs. [86, 87, 88]. Here the gravita-

tional brane G1 associated with the momentum generator has its dual in the

G5-brane. (There is an extra 9-brane in this case too as will be the case for

all the ten dimensional supergravity theories.)

� Type IIB

The supersymmetry algebra of type IIB reads

fQI
�; Q

J
�g = �IJ(�aP)��Pa + (�aP)�� ~ZIJ

a + �IJ (�abcP)��Zabc +
+�IJ(�abcdeP)��Z+

abcde + (�abcdeP)�� ~Z+IJ
abcde (6.49)

where P is a chiral projector. Beside the fundamental string and its solitonic

dual the S5-brane, there also exists Dirichlet branes in type IIB but now with

odd values namely D�1; 1; 3; 5; 7; 9-branes see Refs. [86, 87, 89, 88]. Here is

also the G1, its dual the G5-brane plus the extra 9 brane.

� Type I/Het

These theories are a bit poorer because of the absence of the Ramond-Ramond

�elds. Their supersymmetry algebra takes the much simpler form

fQ�; Q�g = (�aP)�� + (�abcdeP)��(Z+)abcde (6.50)

P is again a chiral projector. Although not manifest there exist a D1-brane

beside the fundamental string and its solitonic dual the S5-brane see Refs.

[90, 87, 91, 92]. Even in this case there are the G1, the G5-brane and the

extra 9 brane.

While studying the brane spectrum it was clear that there was basically four types

of branes namely the Sp-, Dp-, Tp- and Gp-branes. The next couple of subsections

will look at the basic di�erences between these branes and what their dynamical

properties are.

6.1.4 Sp-Branes

The dynamics of Sp-branes follows the bosonic principle of minimal surfaces. There

is a slight problem with this principle in the supersymmetric case though. Although

everything can be made manifestly target space supersymmetric, by simply formu-

lating it in superspace, it is a bit harder to exploit the world-sheet supersymmetry

and thereby get the right degrees of freedon of the scalar multiplet. The trick that

resolves this problem is the concept of �-symmetry. Actually there are three dif-

ferent approaches in order to address this problem, one is the case discussed where

the world-sheet is embedded into target superspace. One could equally look at

world-sheet superspace embedded into target space or make the so called doubly

supersymmetric ansatz and take world-sheet superspace and embed it into target

superspace. The latter has been used with great success in the T5-brane cases where



6.1 p-Branes 89

there is no action describing the dynamics of the brane due to the self-dual tensor

�eld. Though today one must say that the doubly supersymmetric ansatz is the

most beautiful in a geometrical perspective we will follow the standard �-symmetric

ansatz as this was the �rst to reveal its secrets.

Start with the Dirac-Nambu-Goto action for the Sp-brane, i.e.

IDNG = �Tp
Z p

� det g (6.51)

and let the metric be induced from the bosonic metric of target superspace, that is

gmn = Em
aEn

b�ab. It can be seen that this action is not world-sheet supersymmetric

unless one adds an extra term known as a Wess-Zumino term. This term is the

pullback of the anti-symmetric tensor�eld under which the brane is charged. Put

together the action becomes supersymmetric with half the supersymmetry of the

target space. In fact the Wess-Zumino term makes the action �-symmetric and the

desired supersymmetry is reached upon gauge-�xing this �-symmetry. The total

action including the Wess-Zumino term takes the form

I = IDNG + IWZ = �Tp
Z p

� det g + Tp

Z
f�B(p) (6.52)

It is invariant under local �-transformations of the form

(��Z
M )EM

a = 0; (��Z
M )EM

� = �� (6.53)

The fact that the �-symmetry breaks half the target space supersymmetry, or rather

preserves half of the supersymmetry, makes these p-branes BPS states so they will

satisfy the Bogomol'nyi bound. Their masses are thus completely given by the

charges,

M2 = q2e + q2m (6.54)

where the charges are given by

qe =

Z
SD�p�2

�F(p+2) (6.55)

and

qm =

Z
Sp+2

F(p+2) (6.56)

The above mass formula holds for any dyonic states. The charges must satisfy the

generalized Dirac quantization condition [93, 94]

qeqm = 2�n; n 2Z (6.57)

As usual the electric charges are charged under the anti-symmetric tensor �eld and

must in fact be inserted as source �elds while the magnetic charges are of topological



90 Chapter 6 M-Theory

origin and are therefore solitonic. Now both solutions need to satisfy the Bogomol'nyi

bound and must therefore have �nite energy, and in that sense be solitonic. This

is no problem though, because all anti-symmetric tensor �elds come in pairs with

their duals and what is a electric solution for one �eld is the magnetic for the dual

�eld. An important thing to notice is that certain Sp-brane con�gurations in fact

bring the target space supergravity theory on-shell in order for the action to be �-

symmetric. This is the case for the S2-brane in eleven dimensional supergravity and

a lot of things suggest that this should rather be the case for all branes. The origin of

how the branes put constraint on the target space is basically that the �-symmetry

is not ful�lled unless there are certain conditions on the target space torsion and

antisymmetric tensor �elds as they enter in the variation of the action. Now these

condition can be so strong as to in fact bring the whole background theory on-shell.

This is the case for the membrane and also the T5-brane in eleven dimensions.

6.1.5 Dp-Branes

This subsection will be very brief and only give some major results in the theory

regarding D-branes and refer to [95, 88, 96, 97, 98, 99, 100, 101, 102] for a deeper

study of the subject. As was clear from the brane scan where the classi�cation table

of Dp-branes are referred to as to the branes with a vector multiplet. The D stands

of course for Dirichlet and is due to the fact that D-branes are objects on which

open strings can end. This is seen when T-dualizing the open string where one

�nds that the endpoints are stuck to certain hypersurfaces. The dimension of these

hypersurfaces is equal the number of compacti�ed dimension of the T-dualization.

These surfaces come to be called D-branes because they are in fact the same as those

branes with a vector multiplet living on it. Now these branes are dynamical objects,

whose motions can be described with the following action

IDBI = �Tp
Z
e��

p
� det(g + F) (6.58)

where g is the pullback metric and F = 2�F � f�B and F = dA. A is of course the

vector�eld in the multiplet of the brane. The equations of motions was originally

derived using the usual technique of requiring the �-functionals to vanish but now

with an additional boundary term to the original string action action. This boundary

term looks like I
@�

d�(Am@�X
m + �m0@nX

m0) (6.59)

In addition to the ordinary �-functional calculations for the metric, the dilaton

and the anti-symmetric tensor�eld one must here impose the vanishing of the �-

functional with respect to A and �. This lead to the equations of motion for the

D-brane as well as those for the A �eld. These equations of motion can then be

reproduced by varying the action above. Again of course to lowest order in �0.



6.1 p-Branes 91

As was seen in the brane-scan these Dp-branes were restricted to dimensions D =

3; 4; 6; 10 where of course D in this case stands for the dimension of the target space.

So it is clear that they are existing in D = 10 which is the critical dimensions of the

superstrings. In these theories they have come to play a big role in the understanding

of non-perturbative e�ects. There are some basic properties of D-branes namely

� They are BPS-saturated solitons and therefore break half the supersymmetry.

� The tensions scale as g�1s and D-branes are therefore non-perturbative.

� They are charged under the RR �elds and satisfy the Dirac quantization con-

dition, qeqm = 2�n.

As the Dp-branes are BPS states we must require for the action to be �-symmetric

in order to preserve half the supersymmetry of the target space. But as was the

case for the Sp-branes where an additional Wess-Zumino term had to be included in

order to make the action �-symmetric, the same is true for the Dp-branes. Now the

action, although looking very similar to the original Sp-brane action, it also includes

the vector �eld which characterizes the D-brane. The Wess-Zumino term will not

be as simple as in the case with the Sp-branes because it must additionally include

the �eld strength of the vector �eld. It has been shown [103] that the correct way

of including the Wess Zumino term is in the form

IWZ = Tp

Z
eF ^ C (6.60)

for the type IIA and type IIB theory with RR �elds�
C(1) + C(3) + C(5) + C(7) + C(9) (IIA)

C(0) + C(2) + C(4) + C(6) + C(8): (IIB)
(6.61)

which makes the total action look like

I = �Tp
Z
e��
p
� det(g + F) + Tp

Z
eF ^ C (6.62)

This action is now �-symmetric and we are left with only half the target space

supersymmetry on the world sheet [104, 105, 106].

One of the most interesting cases in which these D-branes have played an im-

portant role is in calculating the entropy of black holes [107] where the microscopic

structure of the black hole was calculated by counting D-brane states. Originally the

entropy of a black hole due to Hawking and Bekenstein was only found through the

structure of the di�erential mass equation after the temperature was derived using a

semi-classical analysis of particle creations near a black hole. It is thus a remarkable

feature to be able to re-derive the result by actually calculating the microscopic

structure of the black hole.
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6.1.6 T5-Branes

The treatment of the T5-brane is a bit di�erent due to the existence of the self-dual

3-form, which makes it impossible to write down an action to describe the dynamics,

without introducing auxiliary �elds. For an action formulation containing auxiliary

�elds, see [108, 109]. There is another way of treating branes, though, namely that

of the so called superembedding formalism or the doubly supersymmetric ansatz.

In this formalism one makes yet another approach instead of those of NSR and GS.

Here the brane is described by an superembedding, now from world-sheet superspace

to target space superspace. The fermionic coordinates of the world-sheet are half

in number to those of the target space. Formulated in this way there is manifestly

both target space and world-sheet supersymmetry. Though here the problem is that

the �eld content of the world-sheet is larger than that of the representation. Recall

the representation for the T5-brane from Table 4.4

(1; 1; 1)� (3; 1; 1)� (2; 1; 2) = ��A+
ab �  ia (6.63)

As shown in [110, 111], the so called embedding condition which looks like

E�
a = 0 (6.64)

will reduce the �eld content to exactly that of the representation above. Through

an induced torsion equation this embedding condition put restrictions on the target

space background. In fact in the 11-dimensional case it will put us on-shell. In

the 7-dimensional case though, we have to put an extra constraint on the torsion

tensor to go on-shell. This was done in paper II. It should be stressed that this

embedding condition basically states that the fermionic part of the world-sheet is

entirely embedded into the fermionic part of the target space. It is this condition

that makes the world-sheet multiplet to reduce to the right number of degrees of

freedom.

6.1.7 Gp-Branes

The structure of the Gp-branes is not as thoroughly understood as it is with the

other branes so the discussion is omitted here. The interested reader might consult

Hull [82] for a review of the concept. In that article he also describes the conjectured

extra 9-branes appearing in the various supergravity theories.

6.2 Web of dualities

Today there is overwhelming evidence that all consistent string theories are indeed

di�erent 
avors of the same fruit. The name of the game is string duality. Counting

p-branes as non-perturbative probes of these dualities brings us conjectures of the

truth of the dualities even at the non-perturbative level. Beside the �ve consistent
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superstring theories, the eleven-dimensional M-theory also arises as a candidate for

the more fundamental non-perturbative theory. The problem is that basically the

only thing known about M-theory is that it in the low energy limit looks like D = 11

supergravity. Regarding the string theories higher order terms of the background

�elds can be obtained through the �-functional calculation, but M-theory lacks that

possibility. If the membrane, which probably serves as the fundamental object of M-

theory, could be quantized in the future, the higher order terms of M-theory would

probably be obtained in a similar way to those in the string theories. Today this is

impossible and one has to rely on the higher order terms of string theory and require

that M-theory ends up into these through compacti�cation. The duality relating all

these theories are purely on the conjectural level due to the fact that only the low

energy e�ective actions are taken into account. Nevertheless there are severe evi-

dence that the dualities should generalize to the full theories. The �rm base to this

evidence is supersymmetry. As noticed already in the previous chapter, the intricate

structure of supersymmetry enforces itself through procedures such as embeddings.

That is to say that a sub-theory that is supersymmetric must lie in a totally super-

symmetric theory. The small amount of supersymmetry representations thus makes

the number of possibilities very tiny. The brane-scan was an example to how the

branes with their local supersymmetry properties can be embedded into a larger

background theory with double the amount of supersymmetry. When it comes to

dualities in string theory and M-theory the higher dimensional theories will reduce

in such a way that the �eld representations of the respective theories map to some

possible �eld representation in the lower-dimensional theory. As these representa-

tions are very restrictive so are the possible outcomes of these compacti�cations.

The web of dualities is the result of these restrictive possibilities.

Here will be discussed the basic dualities involving M-theory, including the �ve

superstring theories. The dualities are proved for the low energy e�ective actions

which include, beside D = 11 supergravity and D = 10 supergravity theories, also

N = 2 and N = 1 supergravity in D=9. The low energy e�ective actions of these

theories are related by duality transformations seen in Fig. 6.3. There are three

basic types of duality transformations, namely T-duality, S-duality and U-duality

which will be described in short.

� T-duality

The mass spectrum of string theory compacti�ed on a circle looks for the �rst

oscillator level like

M2 =
� n
R

�2
+

�
mR

�0

�2

(6.65)

The �rst term is due to the quantized Kaluza{Klein momentum modes while

the second term corresponds to the winding number of the string around the

circle. So the mass is invariant under the simultaneous exchange of the Kaluza-

Klein momentum modes with the winding modes, n $ m, and letting R !
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�0=R. This is referred to as T-duality where the T originates from toroidal

compacti�cation. Two di�erent theories are said to be T-dual if they are

related through this type of transformation. As T-duality makes no non-trivial

coupling between the di�erent string coupling constants of the two theories it

can be probed at the perturbative level. We say that T-duality is a weak-weak

duality as it can be proved order by order in perturbation theory. At the

non-perturbative level though, T-duality remains at the conjectural level. For

a review on the subject see Refs. [112, 113].

� S-duality

This duality is in contrast to T-duality a strong-weak duality [114] because it

relates the string coupling constants of the di�erent theories in a non-trivial

manner. Typically the Z2 generated by gs ! g�1s exists as a sub-group of the

total S-duality group. Therefore the strongly coupled regime of one theory is

related to the weakly coupled regime of another through an S-duality transfor-

mation. This makes it impossible to prove order by order in some perturbation

expansion. Probes for this theory must then be dressed in BPS states, which

are topological objects and must be stable under the duality transformation.

These BPS states are typically the p-branes discussed previously.

� U-duality

Suppose we are relating some theories by duality transformations by �rst per-

forming a toroidal compacti�cation in which these theories are T-dual and

then relate these by some other theory by another compacti�cation by which

they are S-dual, then the intuitive picture would be that the total duality

group of this transformation would be the direct product of the two of them.

Now Hull and Townsend have conjectured that not only this direct product

becomes the duality group but in fact a enlargement of it. The conclusion

is that by doing a compacti�cation step by step you loose information about

its original structure and in that sense miss some "duality regions". See Ref.

[115] for a complete study of the conjecture.

As is seen in the duality web the severe restriction on possible supersymmetric

theories makes the world more easier when coming down in dimensions. In D = 9

there are only two types of string theories left and are simply called type I and

type II respectively. Here I and II stands for the amount of supersymmetry in the

respective theory. If one compacti�es further dimensions these will eventually also

be equal if the supersymmetry is broken in such a way that both theories obtain

the same number of supersymmetries. The number of preserved supersymmetries

through compacti�cation is due to the various holonomy groups of the respective

internal manifolds. Going down to four dimensions all di�erent possibilities are

listed in Table 6.1. In the cases listed in the web Fig. 6.3 only one case will reduce

the amount of supersymmetry and that is M-theory on an orbifold. This will be

discussed in the sequel.
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Manifold H Preserved SUSY

Generic7 SO(7) 0

Joyce7 G2
1
8

CY6 SU(3) 1
4

HK4 SU(2) 1
2

Torus 1 1

Table 6.1: CY stands for Calabi-Yau and HK for hyperk�ahler.
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Figure 6.3: The web of dualities.

6.2.1 M-theory $ Type IIA

The low energy e�ective action of M-theory is D=11 supergravity. So the duality

between M-theory and type IIA string theory will is an S-duality in the sense that

it relates the strong coupling limit of type IIA with the low energy limit of M-

theory, namely D=11 supergravity. The duality transformation is obtained through

compactifying D=11 supergravity over a circle, S1. This will split the �eld repre-

sentations into

44 ! 35� 8v � 1 (6.66)

84 ! 56v � 28 (6.67)

128 ! 56s � 8s � 56c � 8c (6.68)

with the following relations between the bosonic �elds

g = G10 + e2
(dy �A)2 (6.69)

A(3) = C(3) + B(2) (6.70)
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Here the radius of the circle is R11 = e
 . The low energy supergravity action of type

IIA theory will be recovered by rescaling the metric like gmn = e
Gmn and through

this process the string coupling constant, gs := e�, can be read o� from the original

type IIA supergravity action. The relation between the string coupling constant and

the radius becomes

gs = R
3=2
11 (6.71)

By compacti�cation all type IIA branes are obtained from the much lesser spectrum

of M-theory. These include the R-R-charged Dp-branes which scale as g�1s and the

NS-NS charged �ve-brane which scales as g�2s . The complete perturbative type IIA

string theory is obtained by taking the limit R11 ! 0. For a complete analysis see

[69]

6.2.2 M-theory $ Het E8 � E8

These theories are also S-dual to each other. Here the D = 11 supergravity theory is

compacti�ed on an orbifold which is taken to be S1=Z2, where the equivalence class

is made by equating the two parities of the circle coordinate and is thus just a closed

interval. This construction will break half the supersymmetry and leave us with the

16 supersymmetries of the heterotic string. The �eld representation truncates down

to

44 ! 35� 1 (6.72)

84 ! 28 (6.73)

128 ! 8s � 56c (6.74)

Here only the symmetric �elds with respect to the parity transformation will survive.

For more details see Ho�rava and Witten [116, 117].

6.2.3 Type IIB

In previous section containing various supergravity theories the type IIB super-

gravity action was written, (excluding the self-dual form), in a manifest self-dual

form. The low energy type IIB theory have classically a SL(2;R) duality symmetry.

Enforcing Dirac quantization conditions this symmetry group to is reduced to its

quantum representative, SL(2;Z). The symmetry transformation acts like

M ! �M�T � � ! a� + b

c� + d
; and ~B ! (�T )�1 ~B (6.75)

where

� =

�
a b

c d

�
2 SL(2;Z) (6.76)

as seen in the supergravity section. This must be referred to as an S-duality trans-

formation as it includes the transformation � ! �� and thus changes the regimes

of strong and weak couplings. See [69] for more details.
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6.2.4 Type IIA $ Type IIB

This is the �rst example, so far, of two T-dual theories. Although type IIB is chiral

while type IIA is non-chiral both will end up in the D = 9, N = 2 supergravity

representation when compacti�ed on a circle, S1. In D = 9 there is no input about

10 dimensional chiralities so both theories will coincide and their �eld representations

will end up in the same representation in 9 dimensions. In fact they have to do this

because there is only one supergravity representation for N = 2 in D = 9. So

the conclusion is that the two type II theories are equivalent in the perturbative

regime in D=9 and a conjecture states that this should be the case also at the non-

perturbative level, see [118]. The natural interpretation of this is that there is only

one type II superstring theory below 10 dimensions and the split into type IIA and

type IIB comes only into play while extending the compacti�cation radii to in�nity.

6.2.5 Het SO(32) $ Het E8 � E8

These theories are also T-dual to each other. As was seen in the previous chapter

while constructing the two heterotic string theories, the requirement for a consistent

string theory was that the 16-dimensional lattice that de�ned the 16-dimensional

torus, upon which the extra internal left moving degrees of freedom were compact-

i�ed, had to be Euclidean and self-dual. Now there were only two of them which

accounts for the two di�erent types of heterotic strings. If the theories are com-

pacti�ed down to 9 dimensions or less, this even Euclidean self-dual lattice will be

replaced by an even Lorentzian self-dual lattice �16+d;d instead, where d counts the

dimension of the torus T d upon which the theory is compacti�ed. In this case it

will turn out that there is in fact only one choice of lattice and we can draw the

conclusion that there is only one heterotic string theory below 10 dimensions as was

the case for the type II strings. The T-duality group becomes in this case that of

O(16 + d; d;Z), for more details read [119, 120, 121].

6.2.6 Type I $ Het SO(32)

The conjecture here is that there is a strong-weak duality (S-duality) between these

theories. The �eld transformations look like

�I = ��Het; gI = e��HetgHet; C(2) = B(2) (6.77)

and the duality group is thus Z2. The string coupling constant of the two theories

are inversely related, i.e. gs $ g�1s , which makes it a strong-weak duality. A detailed

analysis can be found in [114].

6.3 Holography and the AdS/CFT conjecture

From a conjecture due to 't Hooft in 1993 the holographic principle named by

Susskind in 1994 [122, 123] arose as a concept for gravitating systems. The holo-
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graphic principle states that; The fundamental degrees of freedom in a consistent

quantum theory of gravity reside at the boundary and not in the interior of space-

time. On the boundary there is precisely one degree of freedom per Planck area. In a

D dimensional manifold with minkowskian signature the area of the boundary refers

to as the area of a D � 2 dimensional hypersurface enclosing a D � 1 dimensional

volume of space. The total number of degrees of freedom inside a closed box is

thus proportional to the area of the surrounding of the box. Although this principle

today only exist at the conjectural level, there is some evidence in its favor. The

fundamental origin of the holographic principle is through the study of black holes.

It is evident that the degrees of freedom in some sense goes like the entropy of the

system, and for a black hole the entropy is given through the Hawking{Bekenstein

relation, stating that the entropy of a black hole is proportional to the area of its

horizon. Furthermore from the no-hair theorem the information loss problem from

the creation of a black hole can only be solved if the information is kept at the sur-

face. The holographic principle could solve this if the information about the creation

of the black hole is kept by the hologram of its surrounding surface.

At the end of 1997Maldacena [124] found signi�cant evidence for a speci�c theory

obeying this holographic principle. It was through the study of extreme black holes

in terms of D-branes that Maldacena made his break through. A basic feature of

D-branes is that they have a local vector �eld living on the brane. This vector �eld

is generically a U(1) �eld but by stacking several D-branes on top of each other

this U(1) is extended to a U(N) � U(1) � SU(N) gauge �eld, where N denotes

the number of stacked D-branes. The dynamics of the stacked D-branes is not yet

entirely understood but in the low energy limit the gauge �eld is described by an

ordinary Yang{Mills action. By studying the geometry surrounding N stacked D3-

branes in type IIB superstring theory a lot of interesting things were found. First

of all in the near horizon limit the space looked like AdS5 � S5. Furthermore there

are two dimensionless parameters both in the geometry of this black hole solution

and in the gauge theory describing the dynamics of the vector �eld on the brane. In

the black hole solution they are the string coupling constant, 
s, and the common

radius of the anti-de Sitter space and the sphere divided by the string length, R=ls.

In the gauge theory it is the number of colours, N , and the Yang{Mills coupling

constant, g. This lead Maldacena to the conjecture that there should be a one-

to-one correspondence between the physical degrees of freedom of type IIB string

theory on AdS5�S5 and conformal N = 4 supersymmetric Yang{Mills theory with

gauge group SU(N) on the boundary of the anti-de Sitter space. As the boundary

of the anti-de Sitter space is ordinary Minkowski this conjectures relates a pure

gauge theory on a Minkowski, space with a theory containing gravity in the bulk.

Through this analysis the speci�c relation between the dimensionless parameters

were obtained.

gs = g2;
R

ls
= (g2N)1=4 (6.78)
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This conjecture has later been extended by others to include non-supersymmetric

versions of Yang{Mills theory [125]. These are interesting examples that if true

validate the holographic principle and can give us a better insight in the quantum

theory of gravity.
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g Target space metric

EA Target space vielbein
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B Target space connection

TA Target space torsion
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d Target space exterior derivative
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r Target space covariant derivative
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B Intrinsic curvature tensor

d Intrinsic exterior derivative

P Intrinsic canonical one-form

r Intrinsic covariant derivative

g0 Normal metric

EA0 Normal vielbein


A0
B0 Normal connection

TA0 Normal torsion

RA0
B0 Normal curvature tensor
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B World-sheet connection

T
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~~R Vidal curvature tensor
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L Twisting tensor
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K Extrinsic curvature tensor

K0 Complementary extrinsic curvature tensor

� Mean curvature tensor

�0 Complemenatry mean curvature tensor
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1. Introduction

The last years have seen a tremendous progress in the understanding of nonperturbative
aspects of four-dimensional field theory. New techniques [1,2,3,4,5] enable calculation of exact
results valid beyond the perturbative level. It was long ago conjectured [6,7] that the N = 4
supersymmetric Yang–Mills (SYM) theories should possess some kind of strong–weak coupling
duality. These theories are perturbatively finite [8,9,10,11,12,13], and actually exactly finite [14].
Actual calculations of dyon spectra in these theories [15,16, 17,18], and also other tests [19] give
strong support for the duality hypothesis. There are also an infinite number of theories, possessing
N=2, but not N=4, supersymmetry that are one-loop, and thus perturbatively, finite. The only
one of these theories that has undergone closer examination with respect to duality properties is
the SU(2) model with four hypermultiplets in the fundamental representation. There, all results
confirm duality, and it is tempting to conclude that the same is true for all perturbatively finite
N =2 SYM theories. Since all explicit calculations of BPS states in N =4 theories and the finite
N = 2 SU(2) theory sofar are in excellent agreement with predictions from duality, it is natural
to continue this program and include also the other perturbatively finite N=2 theories. The aim
of this paper is to do this by calculating part of the dyon spectra for such theories. As we will
demonstrate, a number of problems arise. They are partly associated with the lattice structures
of electric and magnetic charges, and also with the inaccessibility of monopole–anti-monopole
configurations.

In sections 2 and 3, basic properties about monopoles and their moduli spaces are reviewed.
Section 4 applies an index theorem to find the dimensions of bundles of zero-modes of the various
fields in the theories over moduli space. Section 5 contains a discussion on the lattice properties
of electric and magnetic charges, giving a general argument against näıve duality. In section 6,
the effective action for the monopoles is derived from the field theory, and some aspects of its
quantization are discussed. Section 7 applies this quantization to some specific examples, and
derives the corresponding dyon spectra. They do not support näıve duality. In section 8, the
implications of the results are discussed.

2. Monopoles — Symmetry Breaking and Topology

In this section, we will give a quick review of the concept of Bogomolnyi–Prasad–Sommerfield
(BPS) monopoles [20,21] and their topological properties, aiming at a topological description suited
for the index calculations of section 4. A BPS (multi-)monopole is a static configuration of the
Yang–Mills–Higgs (YMH) system that due to its topological character has a relation between mass
(energy) and magnetic charge. Consider the hamiltonian of the YMH system with gauge group G
(the Higgs field is in the adjoint representation):

H =
1

2

∫

d3xTr (BiBi +DiΦDiΦ) =
1

4

∫

d3xTr
{

(Bi +DiΦ)
2
+ (Bi −DiΦ)

2
}

. (2.1)

If the Bogomolnyi equation

Bi = ±DiΦ (2.2)

is imposed (note that this equation alone implies that the equations of motion are satisfied), the
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energy becomes topological:

H = ±

∫

d3xTrBiDiΦ =

∫

R3

TrFDΦ =

∫

R3

TrD(FΦ) =

∫

S2
∞

TrFΦ , (2.3)

and can be related to the topological magnetic charges of the field configuration (see below).

The topological information of the BPS configuration resides entirely in the asymptotic be-
haviour of the Higgs field. Let us denote the Higgs field at the two-sphere S2

∞at spatial infinity by
φ(x). By a gauge transformation, it can always (locally) be brought to an element in the Cartan
subalgebra (CSA) of g, the Lie algebra of G, and furthermore, by Weyl reflections, into a funda-
mental Weyl chamber. The equations of motion then imply that this element is constant on S2

∞.
We thus have

ψ = g−1(x)φ(x)g(x) , (2.4)

where ψ is a constant element in the CSA. The group element g(x) is not globally defined on
S2
∞, though φ and ψ are. If g is defined patchwise on the two hemispheres, the difference on the

equator is an element in H ⊂ G, the stability group of φ. We will only consider the generic case
of maximal symmetry breaking, when H is the maximal torus of G. This occurs as long as the
diagonalized Higgs field ψ does not happen to be orthogonal to any of the roots. H = (U(1))r is
the unbroken gauge group, where r is the rank of G. In the light of equation (2.4), the Higgs field
on S2

∞may be viewed as a map from S2
∞to the homogeneous space G/H , and all the topological

information now lies in the gauge transformation g(x). The relevant classification is π2(G/H),
which (for semisimple G) is isomorphic to π1(H). For the case at hand, this group is Zr , i.e. there
are r magnetic charges. It is straightforward to calculate the vector k of magnetic charges. The
gauge transformation (2.4) induces a connection ω = g−1dg with field strength f = dω+ω2 = 0
locally but not globally (with the two patches defined above, f has distributional support on the
equator), the magnetic charges of which can be expressed as

k·T =
1

2πi

∫

S2

f =
1

2πi

∫

S1

(ωnorth − ωsouth) (2.5)

(the last integral is evaluated at the equator of S2 where the two patches of the connection meet).
The mass of the configuration is expressed in terms of k using equation (2.3):

m = ±

∫

S2

Tr fψ = 2π |h·k| (2.6)

where ψ is expressed in terms of the vector h as ψ = h ·T ∈ CSA. In section 4, we will use the
gauge transformation g in order to calculate indices of Dirac operators in a monopole background,
yielding the number of zero-modes of certain fields in the presence of a monopole.

The magnetic charge vector obtained from equation (2.5) lies on the coroot lattice Λ∨
r of G.

This agrees with the generalized Dirac quantization condition on electric and magnetic charges,
that

e·k ∈ Z (2.7)

for any charge vectors e and k. Since e must lie on the weight lattice Λw of G, k must lie on
the dual lattice of the weight lattice, i.e. the coroot lattice. We should comment on our choice of
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normalization for the magnetic charges. It means that the scale of the coroot lattice is chosen so
that the coroots are

Λ∨
r ∋ α∨ =

2α

|α|2
, (2.8)

and coincide with the roots for simply laced groups.

An elegant and convenient way of treating the YMH system in a unified way is to consider the
Higgs field as the fourth component of a euclidean four-dimensional gauge connection. We thus let
A4 =Φ, and demand that no fields depend on x4. It is useful to go to a quaternionic formalism,
where the gauge connection sits in a quaternion A=Aµeµ ∈ H, e4 =1 being the quaternionic unit
element and ei, i= 1, 2, 3 the imaginary unit quaternions: eiej = −δij+εijkek. The Bogomolnyi
equation (2.2) now becomes an (anti-)selfduality equation for the field strength Fµν :

Fµν = ±
1

2
εµνρσFρσ (2.9)

and the topological character of the solutions becomes even more obvious. We will use the fact
that a selfdual antisymmetric tensor can be expressed as an imaginary quaternion, and is formed
from two vectors as f+ =Im (vw∗). An anti-selfdual tensor is formed as f−=Im (v∗w). Spinors of
both chiralities come as quaternions. The Weyl equations are for the s chirality D∗s=0 and for the
c chirality Dc= 0. For a more detailed discussion of the quaternionic formalism, transformation
properties etc., see e.g. reference [22].

3. Moduli Spaces and Zero-Modes

A monopole solution is not an isolated phenomenon. There are always deformations of the
field configuration that do not modify the energy. These always continue to satisfy the Bogomolnyi
equation (2.2, 2.9). Deformations of the YMH system alone define tangent directions in the moduli
space of monopole solutions at given magnetic charge k. One obvious set of such deformations is
given by simply translating the (localized) solution. Therefore, the moduli space always contains
a factor R3, but there are in general more possible moduli. Also, when other fields are present,
as in the N = 2 models we consider, these may also possess zero-modes in the BPS monopole
background. These zero-modes also have to be considered in the low energy treatment we will
make.

We will first give a resumé of some of the geometric aspects of the geometry of the moduli
spaces (following reference [23], but in the quaternionic formalism of [22]), and then move on to
the full N=2 model.

Suppose we search for a deformation δA of the gauge connection (in a quaternionic form,
containing the Higgs field). The linearized version of the Bogomolnyi equation (with the plus sign
— the anti-selfdual case is analogous) is Im (D∗δA) = 0, where the rule for formation of an anti-
selfdual tensor from from two vectors has been used. Denote the tangent directions by an index
m. The natural metric is induced from the kinetic term in the action,

gmn =

∫

d3xTr(δmAµδnAµ) =

∫

d3xTrRe (δmA
∗δnA) ≡<δmA, δnA> . (3.1)

We would like a (physical) tangent vector to be orthogonal to any gauge modes in this metric, and
therefore impose the supplementary condition Re (D∗δA) = 0. The two conditions so derived for
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the deformations δmA are collected in

D∗δmA = 0 . (3.2)

We note that this equation is formally identical to a Weyl equation for one of the four-dimensional
spinor chiralities. It is also straightforward to show that the Weyl equation for the other chirality
never can have L2 solutions, simply because the background field strength is selfdual. The dimen-
sion of a moduli space at given k can therefore be calculated as the L2 index of the Dirac operator
on R3 in a known BPS background. As we will see, the only essential information that goes into
the index calculation is the asymptotic behaviour of the Higgs field. This calculation will yield
the complex dimension of the moduli space, provided some selfdual solution with this asymptotic

behaviour exists.

All moduli spaces are known to be hyperKähler. The action of the complex structures on the
tangent vectors is easily understood. If a tangent vector δmA satisfies equation (3.2), then also
δmAei satisfy the same equation. The three complex structures act as

J
(i) n
m δnA = δmAei . (3.3)

They can be shown to be covariantly constant with respect to the connection derived from (3.1).

A parallel transport in the tangent directions of moduli space on the space of zero-modes
should preserve the condition that tangent vectors are orthogonal to gauge modes. In order to
achieve this, one introduces the gauge parameters εm(x) and writes

δmA = ∂mA−Dεm . (3.4)

Parallel transport is generated by the covariant derivative sm = ∂m+ad εm (more generally, εm
acts in the appropriate representation of the gauge group), with the property [sm, D] = δmA.
This implies that D∗

A+dtmδmA
(̺+dtmsm̺) = 0 for zero-modes in any representation, so that sm

provides a good parallel transport of all zero-modes. It is straightforward to calculate the Christoffel
connection of the metric (3.1),

Γmnp = gmq
∫

d3xTr δqAµsnδpAµ = gmq
∫

d3xTr Re (δqA
∗snδpA) = gmq <δqA, snδpA> , (3.5)

and the riemannian curvature [22],

Rmnpq =<δpA, [sm, sn]δqA> + <smδpA,Π+snδqA> − <snδpA,Π+smδqA>

=<δpA, [sm, sn]δqA> −4P+pq
rs <δmA, [sn, sr]δsA> ,

(3.6)

where Π+ =D(D∗D)−1D∗ is the projection operator on higher modes and P+pq
rs= 1

4J
(a)

[p
rJ (a)

q]
s

is the projection operator on the part of an antisymmetric tensor that commutes with the complex
structures, i.e. the Sp(n) part, 4n being the real dimension (J (4) is defined as the unit matrix).
The curvature is a (1, 1)-form with respect to all three complex structures, which is equivalent to
Sp(n) holonomy, i.e. “selfduality”.
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The action for our N=2 super-Yang–Mills theory with matter is most conveniently formulated
as the dimensional reduction of an N=1 theory in D=(1, 5). The six-dimensional action reads:

L = −
1

4
FMNF

MN +
1

2
Re (λ†ΣMDMλ)

−
1

2
DMq

∗
fD

Mqf +
1

2
Re (ψ†

f Σ̃
MDMψf ) + Re (ψ†

fλq
∗
f ) +

1

8
(q∗f×qf)

2 .
(3.7)

Here, representation indices and traces have been suppressed for clarity. In addition to the gauge
potential and its superpartner λ in the adjoint representation, there are the matter bosons q and
fermions ψ. The subscript f labels the matter multiplets. A dagger denotes quaternionic conjuga-
tion and transposition, and, if the representations of G are complex, also complex conjugation. The
matrices Σ and Σ̃ are six-dimensional quaternionic sigma matrices, and the cross product in the
last term denotes Clebsh–Gordan coefficients for formation of an element in the adjoint represen-
tation. The fermions λ and ψ are two-component quaternionic spinors of opposite six-dimensional
chiralities, and the matter boson q is a scalar quaternion.

The supersymmetry transformations are:

δAM = Re (ε†ΣMλ) , δqf = ψ†
fε ,

δλ = − 1
2FMN Σ̃MNε+ 1

2ε(q
∗
f×qf ) , δψf = ΣMεDMq

∗
f .

(3.8)

It is clear from the transformation of λ that a BPS background, obeying (2.2), breaks half the
supersymmetry.

The Higgs field comes as one of the components (A4, say) of the six-dimensional gauge con-
nection. The euclidean four-dimensional formulation automatically comes out on reduction to four
euclidean dimensions, upon which a spinor (of any six-dimensional chirality) splits into a pair of
quaternionic spinors of opposite four-dimensional chiralities.

In order to examine which fields carry zero-modes in the BPS background, and go into a
low energy expansion, we give the moduli parameters a slow time dependence and expand the
equations of motion in the parameter n = #( ddt )+ 1

2#(fermions). At n = 0 one only has the
background fields A with selfdual field strength. At n= 1

2 , there are the Weyl equations for the
upper (s chirality) components of λ and ψ, which we denote α and β, respectively. Their lower (c
chirality) components vanish to this order. The time dependence of the bosonic moduli is modeled
so that A=A(x,X(t)). Then the equations at order n=1 imply, using Ȧ=Ẋm(δmA+Dεm),

A0 = Ẋmεm + (D∗D)−1(−α∗α+
1

2
β∗
f×βf ) ,

A5 = (D∗D)−1(α∗α+
1

2
β∗
f×βf) ,

q∗f = −(D∗D)−1(α∗βf ) .

(3.9)

We see that the only fields that carry zero-modes, apart from the tangent directions to moduli
space itself in the YMH system, are the fermions, both in the vector multiplet and the matter
multiplets.

In order to get information about the number of fermionic zero-modes in the BPS background,
we have to apply the index theorem of Callias [24] to the appropriate representations of λ (the
adjoint) and ψ. We have already seen that the equation for tangent vectors to the moduli space is
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equivalent to a Weyl equation, so that the zero-modes of λ will come in the tangent bundle over
moduli space, whose dimension is given by the index theorem. The zero-modes of ψ will come
in some other index bundles with some connections. These connections and their curvatures are
derived analogously to the riemannian curvature above. if the mode functions are denoted ̺α and
normalized so that α is the fiber index of an orthonormal bundle, the connection is

ωmαβ =<̺α, sm̺β> , (3.10)

and the curvature

Fmnαβ =<̺a, [sm, sn]̺β> + <sm̺α,Π+sn̺β> − <sn̺α,Π+sm̺β> . (3.11)

4. Dimensions of Moduli Spaces and Index Bundles

Callias [24] has given an index theorem for the Dirac operator on R2n−1 in the presence of
a gauge connection and a scalar matrix valued hermitean (Higgs) field that takes some nonzero
values at spatial infinity. This index theorem is applicable precisely to the situation at hand. The
index only depends on the (topological) behaviour of the Higgs field Φ at infinity. Callias theorem
states that the L2 index of the Dirac operator on R

3 in the representation ̺ is given as

indexD/ ̺ = −
1

16πi

∫

S2
∞

Tr̺(UdUdU) . (4.1)

Here, the matrix U is defined as U = (φ2)−1/2φ. Callias postulates that φ should have no zero
eigenvalues, so that U is well defined. This assumption is directly related to the Dirac operator
being Fredholm. If it does not have this property, there is a continuous spectrum around zero
that, depending on the behaviour of the density of states, may contribute to the index calculation
and give an incorrect result. Actually, in the case we are interested in, there are zero eigenvalues,
corresponding to the fields that remain massless after the symmetry breaking. E. Weinberg [25]
has shown that the massless vector bosons of the generic maximal symmetry breaking pattern
do not contribute in the index calculation. On the other hand, for nonmaximal breaking to a
nonabelian group H , one has to be more careful, and examine the exact contribution due to the
roots orthogonal to the Higgs field. The same is true for some special values of the Higgs field that
becomes orthogonal to some weight in a representation for the matter fields (see below). In the
generic case, though, all one has to do is to replace the matrix φ by its restriction to the subspace
spanned by the eigenvectors with nonzero eigenvalues. The corresponding restricted Dirac operator
will have the desired Fredholm property.

The actual computation of the index is conveniently performed using the gauge transformation
g of section 2. After the gauge transformation has been performed, the Higgs field has changed
to the diagonalized Higgs field ψ ∈ CSA, and the derivative simply becomes the commutator with
the induced connection ω, since dψ=0. We thus have

indexD/ ̺ = −
1

16πi

∫

S2
∞

Tr̺(V [ω, V ]2) =
1

4πi

∫

S2
∞

Tr̺(V dω) , (4.2)
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where V =(ψ2)−1/2ψ, and we have used V 2 =1 and dω=−ω2. Taking the trace in the representa-
tion ̺ gives the result, using equation (2.5) for the magnetic charge vector,

indexD/ ̺ = k·Λ ,

Λ =
1

2

∑

λ∈̺
λ sign(h·λ) , (4.3)

the sum being performed over the weights of the representation ̺. It is clear that the index stays
constant as long as h does not become orthogonal to some weight, in which case the index changes
discontinuously.

The expression (4.3) enables us to calculate the index explicitly for any magnetic charge and
any representation of G. We will now turn to some examples that will be of use later. We first
define the simple roots with respect to the value of the diagonalized Higgs field in the Cartan
subalgebra. The vector h can always be chosen in the fundamental Weyl chamber so that its scalar
product with all simple roots is positive. This is illustrated for SU(3) in figure 1.

α

α

1

2

FWC

h

Figure 1. The fundamental Weyl chamber and the simple roots for SU(3).

Starting with the adjoint representation, it may be verified that when the magnetic coroot
vector is expressed as a linear combination of the simple coroots (with the normalization (2.8)) as

k = k1α
∨
1 + k2α

∨
2 + . . .+ krα

∨
r , (4.4)

the index for the Dirac operator is

indexD/ adj = 2 (k1 + k2 + . . .+ kr) (4.5)

for any semisimple Lie group (and maximal symmetry breaking).

In order to translate this result into the complex dimension of a moduli space at magnetic
charge k, some care has to be taken — it is only true provided that some selfdual configuration with
the corresponding asymptotic behaviour of the Higgs field actually exists (or anti-selfdual, so that
the dimension is minus the index). The result indicates that the real dimension of a moduli space
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for k a simple coroot is 4. This can be verified — such selfdual solutions exist, and are described by
embeddings of the ‘t Hooft–Polyakov [26,27] SO(3) monopole. We denote these simple monopoles.
According to the interpretation of E. Weinberg [25], any multi-monopole at a k given by (4.4) with
only positive coefficients ki can in an asymptotic region be approximated by a superposition of well
separated simple monopoles, and analogously for anti-monopoles. This agrees with the linearity
of the index in k. A magnetic coroot formed as (4.4) with both positive and negative coefficients
would asymptotically correspond to a field configuration that is approximately selfdual in some
regions and anti-selfdual in others. Such a configuration can not be static, since the magnetic and
Higgs forces between a monopole and an anti-monopole do not cancel. Either such configurations
do not exist, or they are simply inaccessible to us at our present understanding. This is of course a
problem already with gauge group SU(2), but there it does not manifest itself in terms of allowed
and disallowed sectors in the coroot lattice, as it does for higher rank gauge groups, merely as a
lack of understanding of the interaction between monopoles and anti-monopoles. If one doubts
the above argument, it is illuminating to consider the points in the coroot lattice where the index
(4.5) vanishes. Since the dimensionality of a moduli space can not be zero (translations are always
moduli), it becomes clear that no static BPS configurations with these magnetic charges can exist.
The allowed sectors for magnetic charges in an SU(3) theory are shown in figure 2, where unfilled
roots indicate forbidden magnetic charges.

Another representation of special interest is the fundamental representation of SU(Nc). Begin-
ning with SU(3), and ordering the (co)roots by h ·α1 > h ·α2, the index becomes indexD/ 3(SU(3)) =
k1. This is the complex dimension of the fiber of the index bundle of zero-modes in the fundamen-
tal representation for allowed positive magnetic charges. We note that when the Higgs field aligns
with the root α1+α2 in the middle of the fundamental Weyl chamber, a quark and an antiquark
become massless, and the index formula of Callias may give the wrong result. In fact, when h
crosses this line, the zero-mode at k = α1 disappears and a new zero-mode instead appears at
k=α2. The index formula gives a result in between, which clearly is nonsense. The Dirac operator
is not Fredholm in the fundamental representation in this case. It is possible, though, to follow
the asymptotic behaviour of the solutions to the Dirac equation. For generic h the normalizable
solutions decay exponentially with the radius, while for a degenerate case as this one there is a
power law behaviour. One may check that these solutions have a leading term proportional to
r−1/2, so they are not L2. For this special direction of the Higgs field there are thus no zero-modes
in the fundamental representation. A similar situation occurs at the boundary of the fundamental
Weyl chamber, where the symmetry breaking pattern changes to H=SU(2)×U(1) as some vector
bosons become massless. We do not consider this nonmaximal symmetry breaking in this paper.

The indices in the fundamental representations of other SU(Nc) groups behave in a similar
way. We can illustrate by looking at SU(4), where we have the simple roots α1,2,3 with α2

1 =α2
2 =

α2
3 = 2, α1 ·α2 = α2 ·α3 = −1, α1 ·α3 = 0. In the interior of the fundamental Weyl chamber the

symmetry breaking pattern is the maximal one, SU(4) → U(1)×U(1)×U(1). At the three planes
forming the boundary, SU(4) is broken to SU(2)×U(1)×U(1), and where the planes intersect to
SU(2)×SU(2)×U(1) (one line) or SU(3)×U(1) (two lines). The weights in the representation 4,
specified by their scalar products with the simple roots, are λ(1,0,0), λ(−1,1,0), λ(0,−1,1) and λ(0,0,−1).
The fundamental Weyl chamber divides in two parts, related by the Z2 of outer automorphisms,
and we choose to stay in the region where h ·α1 > h ·α3. On the boundary there are massless
quarks. This also happens when h ·λ(−1,1,0) = 0. This plane divides the half fundamental Weyl
chamber in two parts. In the region where h ·λ(−1,1,0) > 0 the index is indexD/ 4(SU(4)) = k2 and
when h·λ(−1,1,0) < 0 it is indexD/ 4(SU(4)) =k1. Similar statements hold for higher SU(Nc) groups.
The index in the fundamental representation depends only on one of the simple magnetic charges.
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The representation 6 of SU(3) is interesting because it is contained in one of the perturbatively
finite models. The index is indexD/ 6(SU(3)) = 3k1, with the same choice of ordering of the roots
as above. The number of complex zero-modes for the representations 3, 6 and 8 of SU(3) in the
allowed sector of positive k are shown in figure 2 (negative k are obtained by reflection in the
origin).

α

α2

1

(1,3,2)

(1,3,4)(0,0,2)

(0,0,4) (1,3,6)

(2,6,4)

(2,6,6)

(2,6,8)

Figure 2. The allowed positive magnetic charges and number of zero-modes in 3, 6 and 8 of SU(3).

5. Lattices of Electric and Magnetic Charges — Duality?

In this section, we will comment on the possibilities for dual theories from the viewpoint
of electric and magnetic charge lattices. In the original Goddard–Nuyts–Olive (GNO) duality
conjecture [7], which generalizes the Montonen–Olive conjecture [6] of SO(3) to higher rank gauge
groups (both applying to N = 4 SYM), it is noted that the magnetic charges lie on the coroot
lattice Λ∨

r, which is the root lattice of the “dual group”, i.e. the group where long and short roots
are interchanged. It should be noted, for clarity, that even if the spectrum of electric charges of
the elementary excitations of the theory does not span the entire weight lattice (of SU(Nc), say),
this does not leave us with more choices for the magnetic charges, as one might suspect from the
generalized Dirac condition (2.7). Indeed, the magnetic charges still are constrained to the coroot
lattice, as seen from equation (2.5), disregarding of the matter content of the theory. So, in the
case of N=4 SYM with gauge group SU(Nc), where all fields come in the adjoint representation,
i.e. only in one of the Nc conjugacy classes of the weight lattice, so the actual gauge group is
SU(Nc)/ZNc

, the magnetic charges still lie on the coroot lattice of SU(Nc), i.e. on the weight
lattice of SU(Nc)/ZNc

. The GNO conjecture states that an N =4 SYM theory is Z2 dual to the
N = 4 SYM theory with the dual gauge group. The validity of the conjecture has been partially
vindicated by actual calculation of parts of the dyon spectra [15,16,17,18].

When we consider N=2 models with a matter content that makes the theory perturbatively
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finite, the GNO interpretation of the coroot lattice must be revised. For example in the SU(2)
theory with four fundamental hypermultiplets, the coroot lattice of SU(2) is reinterpreted as the
weight lattice of SU(2) instead of the root lattice. This simply amounts to a rescaling by a factor
2. The Z2 pictures of the quarks now reside at k=±α∨, where in the N = 4 theory the duals of
the massive vector bosons were found. This is of course possible due to the simple fact that the
root and weight lattices of SU(2) are isomorphic up to an overall scale. Some of the dyonic states
with low magnetic charges have been found, and support the duality hypothesis [2,28,29].

When we move to more general gauge groups, the picture is less clear. As a first example, we
have the two perturbatively finite SU(3) theories, one with six hypermultiplets in the fundamental
representation, the other with one fundamental multiplet and one in the representation 6. The
elementary excitations now carry electric charges in all three conjugacy classes of SU(3), so we want
also the magnetic charges to fill out the entire weight lattice of SU(3), if Z2 duality is supposed to
hold. This reinterpretation of the coroot lattice is indeed possible, since the root and weight lattices
of SU(3) are isomorphic up to a scale. It is therefore meaningful to examine the actual spectrum
of monopoles and dyons in these two models in order to find signs for or against strong–weak
coupling duality. As we will see later, the dyon spectra do not support näıve selfduality.

In general, already considering the lattices seems to contradict näıve duality. The coroot
lattice, being the root lattice of the dual group, is generically not isomorphic to a weight lattice
containing representations that allow matter multiplets in other conjugacy classes than the trivial
one. Take SU(4) as an example. The (co)root lattice of magnetic charges is the fcc lattice, while
the weight lattice (dual to the (co)root lattice) of electric charges is the bcc lattice. With the
GNO interpretation of the coroot lattice, the dual gauge group is SU(4)/Z4 and there is no room
for matter in nontrivial conjugacy classes. The only possible matter content is in the adjoint
representation, yielding the N=4 theory. One might look for a dyon spectrum that only contains
states on some sublattice of the coroot lattice, isomorphic to the relevant part of the weight lattice
[30]. Such sublattices exist, but as we will show explicitly (with SU(4) as an example), the dyon
spectrum is not confined to such a sublattice. Again, we recognize no signs of selfduality in the
dyon spectrum.

Another point, already touched upon in section 4, is that even if the isomorphism between the
root and weight lattices for SU(3) is used as above, or if one tries to pick out a sublattice isomorphic
to (part of) the weight lattice, one is immediately led to considering states in “forbidden sectors”,
asymptotically consisting of superpositions of monopoles and anti-monopoles. Such configurations
are not included in the present treatment. Whether this is a fundamental impossibility or an
incompleteness of the semi-classical procedure is not clear to us (there might exist non-static
configurations that are possible to interpret as bound states of monopoles and anti-monopoles,
although it is unclear to us how such states could saturate a Bogomolnyi bound).

6. The Effective Action — Quantization

The procedure we follow in order to find the soliton spectrum of the full quantum field theory
is to make a low energy approximation of the theory in a BPS background. Due to the mass
gap, corresponding to the Fredholm property of section 4, the number of degrees of freedom in
this approximation becomes finite. The field configuration moves adiabatically on the moduli
space, and the behaviour of the model is that of a supersymmetric quantum mechanical model
with the moduli space as target space. The number of supersymmetries is half the number of
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supersymmetries in the original field theory. The reason why this low energy approximation gives
reasonable information about the spectrum of the full theory is that if we find BPS saturated
states at low energy, these will come in a short multiplet of the N=2 supersymmetry algebra, and
will necessarily continue to do so at any scale [31]. If the theory is finite, the mass formula of the
adiabatic approximation will be exact, while, if the theory is renormalizable, it is renormalized.

In order to find the supersymmetric quantum mechanical model corresponding to the actual
theory we are interested in, we only keep the zero-modes of sections 3 and 4 as dynamical variables.
Concretely, we derive the low energy action by solving for all fields to order n=1 as in (3.9), plug
the solutions back into the field theory action (3.7), and keep terms of order n = 2. We then
integrate over three-space, using the expressions for metrics, connections and curvatures of section
3. The resulting lagrangian was calculated in [22], and reads

L = −2πh·k +
1

2
gmnẊ

mẊn +
1

2
gmnλ

mDtλ
n +

1

2
ψαDtψ

α −
1

4
Fmnαβλ

mλnψαψβ , (6.1)

Here, we have denoted the fermionic variables, in sections of appropriate bundles over moduli
space, with the same letters that were used in the field theory action. The covariant derivatives
used on the fermions are defined as Dtλ

m= λ̇m+ΓmnpẊ
nλp and Dtψ

α= ψ̇α+ωαβm Ẋmψβ . If one
has N=4 supersymmetry, also the ψ’s come in the tangent bundle, and the field strength F is the
riemannian curvature. The lagrangian (6.1) has “N = 1

2×4” supersymmetry, meaning that there
are four real supersymmetry generators. They take the form

Q(a) = λmJ (a)
m
nVn , (6.2)

where Vm is the velocity gmnẊ
n. It is essential, and a necessary consequence of the existence

of these supersymmetries, that F is selfdual, i.e. a (1, 1)-form with respect to all three complex
structures.

When quantizing the supersymmetric quantum mechanical system given by (6.1), we look for
“ground states”, i.e. states that continue to saturate a Bogomolnyi bound. These are zero energy
states for the system given by the lagrangian without the first term, at least when the electric
charge vanishes. The electric charges modify equation (2.6) to

m2 = (h·e)2 + (
2π

g2
h·k)2 , (6.3)

where the coupling constant has been reinstated explicitly (this relation follows from the form
of the extension of the N = 2 supersymmetry algebra). Consider the solutions (3.9) to the field
equations. We can use them to derive an explicit expression for the electric charge density:

DiEi = ẊmDiδmAi + α∗α−
1

2
β∗×β . (6.4)

Integrating this over three-space gives a “topological” electric charge from the first term, which
is the momentum on the S1 of the moduli space. Here, the contribution to the charge density
is Ẋ4DiDiΦ, and the electric field is proportional to the magnetic field, with the proportionality
constant being the velocity on S1, so that electric charges that arise this way are collinear with
the magnetic ones. The second term does not contribute. Using α= δmAλ

m, where λm are real
fermionic oscillators, it gives after integration λmλn <δmA

∗δnA>= 0. Using β = ̺αψ
α, the last

term becomes ψαψβ<̺∗α×̺β> . For a complex representation, this may contain an element in the
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Cartan subalgebra. A straightforward calculation, using the orthogonality relations for the zero-
modes of the fundamental representation of SU(3) and magnetic charge α1, shows that it indeed
is Qψ̄ψ, where Q is the U(1) charge of the representation 2 in the decomposition 3 → 21/6 ⊕ 1−1/3

under SU(3) → SU(2)×U(1), the SU(2) being defined by α1 as in the following section.

A comment on the mass–charge relation: When we find a quantum mechanical state using
the low energy action, we can not expect to find the exact expression for the mass from the
corresponding hamiltonian. What we see is a low energy approximation. For the S1 momenta,
it gives the first term in the series expansion for low velocity on the circle. For the “orthogonal”
charges from the matter fermions, there is no continuous classical analogue, and these electric
charges are not seen in the low energy hamiltonian. However, we can deduce from the fact that
the states come in short multiplets that they must be BPS saturated.

One has to divide the fermionic variables into creation and annihilation operators. Using the
Kähler property, we can take λ̄µ̄ as creation operators and λµ as annihilation operators, where
µ is a complex index. We then have two equivalent pictures: either the states are forms with
anti-holomorphic indices, or we view λm as gamma matrices as in the quantization of the spinning
string, and the states are Dirac spinors. The equivalence is easily seen from a representation
point of view — when the full holonomy SO(4n) is reduced to SU(2n), the two spinor chiralities
decompose into even and odd forms. Zero energy states are harmonic forms, or spinors satisfying
the Dirac equation.

The presence of the ψ’s means that the forms/spinors have to be harmonic with respect to the
connection ω, and also carry antisymmetric indices coming from the creation operator part of ψ
(or a spinor index). In the case of N =4, the fermions together come in the complexified tangent
bundle, so that ground states are any harmonic forms.

The general pattern is that the part of the λ’s belonging to the R3×S1 part of moduli space
generates the appropriate number of states of a short multiplet of the space-time supersymmetry
algebra. We thus only have to consider the internal space (and only count singlets under the
discrete group that is divided out) in order to find the number of multiplets. When the dimension
of the internal space is four, one can use the selfduality of the field strength for a vanishing theorem,
completely analogous to the one used in space-time: all the solutions to the Dirac equation have
to come in only one of the spinor chiralities. This reduces the problem of identifying the ground
states to that of calculating the index of the Dirac operator. For higher-dimensional moduli spaces,
there is a priori no such vanishing theorem, and it seems like one has to resort to calculating the
L2 cohomology, which of course is a much harder problem, of which little seems to be known.

7. Dyon Spectra for Low Magnetic Charges

The moduli spaces for the magnetic charge being any simple coroot is identical to the one-
monopole moduli space in the SU(2) theory. Also, when k is a multiple of a simple coroot, the
moduli space is identical to the corresponding SU(2) moduli space. The new ingredient for higher
rank gauge groups comes when k is a linear combination of different simple coroots. If k is a
linear combination of orthogonal simple coroots, the moduli space factorizes metrically into the
product of SU(2) moduli spaces. The only nontrivial example that is accessible so far is the space
at k = α∨ +β∨, where α∨ ·β∨ < 0. As is pointed out in [17,18], a very general argument tells
us that the isometry group of the inner moduli space has to be SU(2)×U(1) (the “extra” U(1)
isometry is associated with local conservation of the “relative” magnetic charge). The unique
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regular hyperKähler manifold with this isometry is Taub–NUT with positive mass parameter, and
global considerations (see Appendix A) lead to to the moduli space

M = R
3×

S1× Taub–NUT

Z2
. (7.1)

Appendix B contains some basic facts about Taub–NUT space.

We also would like to find explicit expressions for the connections and curvatures of the index
bundles associated with the various matter fermions. Starting with the fundamental representation
of SU(3) as a model example, we consider the magnetic charge k=α1.

λλ

λ

2 1

3

α

α

1

2

Figure 3. The representation 3 of SU(3).

It is clarifying to calculate the index for the Dirac operator using a decomposition into SU(2)×
U(1), where the SU(2) is defined by the root α1. The decomposition of the representation 3 is
3 → 21/6 ⊕ 1−1/3. Only the 2 of SU(2) (containing the weights λ1 and λ2 of figure 3) has a
zero-mode, so that the zero-modes carry a U(1) electric charge 1/6. The S1 in the moduli space is
generated by gauge transformations with (the SU(2) part of) the Higgs field as gauge parameter.
Already when this transformation arrives at the group element exp(πiα1·T ), the nontrivial element
in the center of SU(2), it acts as the identity in the adjoint representation. In the fundamental
representation of SU(2), on the other hand, this element acts as minus the identity, which means
that the index bundle has a Z2 twist around the S1 [32]. This is true also here. If one imposes
single-valuedness of the wave function, this implies that there is a correlation between the S1

momentum, which is the electric charge in the α1 direction and the excitation number of the ψ’s,
carrying electric charge in the direction orthogonal to α1. The result of these considerations is
that the electric charges are constrained to lie on the weight lattice, which is of course expected.
The electric spectrum at k=α1 for the theory with six fundamental hypermultiplets is indicated
in figure 4. The numbers denote representations under the flavour SU(6).

The representation 6 is treated similarly. It decomposes as 6 → 3−1/3 ⊕ 21/6 ⊕ 12/3. The 3
carries two zero-modes (in the tangent bundle) and the 2 one. This last zero-mode again has a Z2

twist around S1. The electric spectrum at k=α1 for the model with one fundamental hypermul-
tiplet and one in the representation 6 is depicted in figure 5, where the number of multiplets at
each lattice point is indicated.
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Figure 4. The electric spectrum at k=α1 for six multiplets in 3 of SU(3).
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Figure 5. The electric spectrum at k=α1 for one multiplet in 3 and one in 6 of SU(3).

At k = α2, there are no matter zero-modes. We just get one multiplet of states at electric
charges that are multiples of α2. The same statement holds true in the presence of matter in the
representation 6.

At k = α1 +α2, there is one zero-mode in the fundamental representation. We have to find
the connection of the index bundle over the Taub–NUT space. It has to be a U(1) connection
with selfdual field strength. It is a well known fact that there exists only one (linearly indepen-
dent) selfdual harmonic two-form on Taub–NUT space, to which the field strength then has to be
proportional (see appendix B). We have to determine the normalization factor c in front of the
connection. This can be done by considering the holonomy in the region of moduli space where
the monopoles are well separated, i.e. at large r. If we move around the circle generated by ∂

∂ψ ,
the first time we should get back to the original configuration is after completing the whole circle.
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Integrating along a curve Cγ : 0 ≤ ψ ≤ γ at constant r gives
∫

Cγ
ω=γc r−Mr+M . Thus, the smallest

value of γ for which exp(i
∫

Cγ
ω)= 1 at infinite radius should be 4π. This gives

∮

C4π
ω= 2π, and

c= 1
2 . We then need to find the index of the Dirac operator for fields of various charges with re-

spect to the U(1) connection. This is completely analogous to the calculation performed in [28,29]
for the Atiyah–Hitchin manifold. One can use the Atiyah–Patodi–Singer index theorem and push
the boundary to infinity. An additional issue here is that if we want to know the spectrum of
the electric charge orthogonal to α1 +α2, we must investigate how the solutions depend on the
coordinate ψ. Luckily enough, both the index and the explicit expressions for the mode functions
are known [33]. If we call the charge of one creation operator for the matter fermions 1, the states
will come with charges q which are the “vacuum charge” plus n, where n is the number of creation
operators applied. When the number of matter multiplets is even (we consider self-conjugate elec-
tric spectra) these charges will be integers. Pope [33] showed that the number of zero-modes of
the Dirac operator for positive charge q is 1

2q(q+1) and that they depend on the ψ coordinate as

exp(− 1
2 iνψ), ν=1 . . . q, the number of states at each value of ν being ν, together with an analogous

statement for negative q. Taub–NUT space is simply connected, so the charges are a priori not
restricted by any quantization rule, and the results in [33] contain this more general case. The
value of ν is related to the electric charge in the direction orthogonal to α1+α2 by Q=ν/6 with the
normalization for the U(1) charge used earlier. The Z2 identification of the moduli space produces
a correlation between ν and the S1 momentum. The spectrum of electric charges for k=α1+α2 in
the SU(3) model with six fundamental hypermultiplets is depicted in figure 6, where the numbers
indicate SU(6) representations.
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Figure 6. The electric spectrum at k=α1+α2 for six multiplets in 3 of SU(3).

It is probably reasonably straightforward to derive the spectrum at k = α1 +α2 also in the
presence of matter in the representation 6. We have not done this.

The results for the SU(3) theory with six fundamental hypermultiplets are summarized in
figures 4 and 6, together with the electric spectrum at k=α2, which just consists of one multiplet
at any integer multiple of α2. It is also straightforward to extend the dyon spectrum to k= 2α1
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and k = 2α2. We have not been able to find the states at the magnetic charges where Z2 duals
of the vector bosons would be expected to reside. These are either outside of the allowed sectors
or have eight-dimensional inner moduli spaces, whose metrics are not known. If we examine the
electrically uncharged states at the magnetic charges where the dual quarks were expected, we
find, instead of six multiplet at each lattice point, twenty, one and zero multiplets at charge α1,
α2 and α1+α2 respectively.

For theories with N = 4, the calculations are simpler. As shown in section 6, there are
no fermion contributions to the electric charges, so the electric charge aligns with the magnetic
charge. As already mentioned, ground states correspond to any (normalizable) harmonic forms
on the internal moduli space. For simple magnetic coroots, the moduli space is R3×S1, and
there is only one short multiplet for electric charges at integer multiples of the corresponding root
(note that the integer in Dirac’s quantization condition (2.7) is even). For k at twice a coroot,
there is, as demonstrated by Sen [15], a unique selfdual harmonic two-form on the Atiyah–Hitchin
manifold, corresponding to one multiplet at e being any odd multiple of the root (the selection of
odd multiples comes from the Z2 divided out in the definition of the moduli space). At k being
the sum of two simple coroots with negative scalar product, one has, as noted in [17,18], again the
unique selfdual harmonic two-form mentioned earlier, that now gives one multiplet at any integer
multiple of the corresponding root. Porrati [16] has presented convincing evidence for the existence
of all states predicted by Sl(2; Z) duality for the N=4 SU(2) model. Note that the Sl(2; Z) duals
of the massive vector bosons in any N=4 theory always lie in the allowed sectors for the magnetic
charges.

When we continue this discussion to higher rank gauge groups, nothing changes in principle.
Part of the above discussion applies to moduli spaces at simple coroots or sums of two simple
coroots for any gauge group. We have also seen (for the SU(Nc) groups) that the matter in the
fundamental representation behaves very similarly to what it does in SU(3). This means that we
can not hope to find dyon spectra with magnetic charges confined to a sublattice isomorphic to
the weight lattice. There will always be some states at the simple coroots, which will not be in
such a sublattice.

8. Conclusions and Outlook

The results of this paper are essentially the following. In spite of the success of the procedure
applied here in finding the (low lying) dyon states predicted by Sl(2; Z) duality for the N = 4
models and the N=2 SU(2) model with four fundamental hypermultiplets, the picture we see for
higher rank gauge groups and matter content making the theory perturbatively finite is much less
clear. We have for example not been able to identify the purely magnetically charged states in the
quantum theory with the elementary excitations of some “dual” finite N = 2 theory. There are
also sectors of the magnetic charge lattices that are inaccessible due to our inability of treating
systems containing monopoles and anti-monopoles, and this seems to exclude the treatment of
states needed for duality. This is no problem for the N = 4 theories, since the states needed for
duality align with the roots, and are always found in the allowed sectors, but renders the situation
problematic for N=2 models with gauge groups of rank r≥2.

As we see it, there are a couple of possible interpretations of the results of this paper. One is
that the procedure in some way is incomplete. We saw that some of the magnetic charges we would
need for a duality conjecture lie in forbidden sectors, that would correspond to superpositions of
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monopoles and anti-monopoles, something that is not accessible even in the SU(2) models. We do
not know how to describe scattering of monopoles and anti-monopoles, unless we move to a dual
picture. On the other hand, if such configurations were relevant, they would enter at any magnetic
charge, and they would probably modify the successful calculations supporting duality for the finite
SU(2) model. We find it unlikely that this could explain any shortcomings. In addition, we have
seen that the lattice structures have problems that such a modification hardly could overcome.

A very drastic explanation of the results would be that the theories under consideration are not
finite — that there would be instanton corrections to the β function, although one has perturbative
finiteness. This sounds very strange and quite unlikely to us, but to our knowledge instanton
contributions have not been calculated. On the other hand, the methods of [1, 2] have been
applied to the case of SU(Nc) with fundamental matter [34,35,36,37], and these results, support
exact finiteness (although some of the statements are conflicting). It should be possible to perform
at least a one-instanton calculation in order to verify that these models also are nonperturbatively
finite.

A last possibility, which seems most likely, is that there is some kind of modified version of
duality that does not include the Z2 of strong–weak coupling. A consideration that might give a
clue is the following. The duality group has been conjectured to be not only Sl(2; Z), but Sp(r; Z),
where r is the rank of the gauge group. When we examine the dyon spectrum of the N=4 theories,
on the other hand, we only find electric charge vectors aligned with the magnetic ones (this is a
direct consequence of the properties of monopole configurations at a multiple of a coroot, being
embedded SU(2) monopoles), so that we see only Sl(2; Z) pictures of the elementary excitations.
When we move to N=2 theories with higher rank groups, the “off-diagonal” part of the Sp(r; Z)
matrices, i.e. the one exchanging electric and magnetic charge, consists of a tensor in Λ∨

r⊗Λ∨
r and

one in Λw⊗Λw. Of course, in a suitable basis, these just become matrices with integer entries, but
when the basis vectors for the two lattices are not aligned (which they in general are not, since the
lattices are different) such a basis is not natural, in view of the mass formula (6.3). This means
that in general, and even for SU(3), there is no “natural” way of chosing an Sl(2; Z) subgroup of
Sp(r; Z), where the tensors mentioned above would become diagonal. A supposed Z2 duality would
in turn lie in such an Sl(2; Z) subgroup. One might then speculate in some kind of “duality” for
higher rank gauge groups that actually does not include a Z2 of electric–magnetic exchange. We
find this issue interesting to pursue. In connection it is also worth mentioning that peculiar lattice
properties of the charges in higher rank gauge groups have been found earlier. In reference [38], the
existence of simultaneously massless dyons with nonvanishing Sp(r; Z) product was demonstrated
(for gauge group SU(3)), so that there should exist vacua where elementary excitations couple
both electrically and magnetically to the gauge field. The evidence points towards a quite rich and
interesting structure of these theories.

In conclusion, the results of this paper, rather than giving definite answers, raises a number
of questions we find it urgent to investigate.

Note added: After correspondence with the authors of reference [37], we realize that for gauge
groups of rank 2, and only then, there is a “natural” Z2 transformation, namely where the above
mentioned tensors are the “epsilon tensors” α∨1 ⊗ α∨2 − α∨2 ⊗ α∨1 and λ1 ⊗ λ2 − λ2 ⊗ λ1. In an
orthonormal basis these become antisymmetric matrices, and do not depend on the choice of
simple coroots or weights. Since they relate two different vector spaces, they can be thought of as
unit matrices. Such a transformation maps the electric charges of the fundamental representation
of SU(3) on coroots, so we do not find support for duality under this Z2 group. In [37], subgroups
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of Sp(r; Z) are considered that preserve the scalar products between roots of SU(Nc) (up to a
scale), so that the transformation of the “coupling matrix” only consists of a transformation of
the complex coupling constant. We hope to return to a closer examination of subgroups that
might explain parts of the spectrum we observe (though it is difficult to conceive how the entire
spectra could be generated). Our attention has also been drawn to reference [39], where some of
the arguments and results are very close to ours.
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Appendix A: Topology of the Moduli Space at k=α1+α2

As we have seen, the moduli space at k=α1+α2 is actually completely determined just by
considering its isometries together with the hyperKähler property. In this appendix, we will use
the correspondence between moduli spaces and spaces of rational holomorphic maps to get direct
information about the topology of this space, and support the indirect arguments. This procedure
could in principle be continued along the lines of [40] to obtain also the metric.

For SU(2) monopoles, there is an isomorphism between the moduli space at charge k and the
space of rational holomorphic maps S2 → S2 , due to Donaldson [41]. This result was extended
to more general groups by Hurtubise [42], where the case of maximal breaking was considered,
and the moduli spaces shown to be isomorphic to spaces of rational holomorphic maps from S2 to
G/H (“the broken gauge group”). The target space of the holomorphic map is a “flag manifold”,
i.e. a space of nested vector subspaces C ⊂ C2 ⊂ . . . ⊂ CN . This makes it quite straightforward
to write down explicit coordinates for these manifolds as CP 1 bundles over CP 2 bundles over . . .
over CPN−1.

We will examine the case of SU(3)/(U(1)×U(1)), i.e. the manifold of complex lines in a
complex plane in C 3. This clearly implies an S2 bundle over CP 2. Explicit parametrization of the
plane and the line, and some minor redefinition in order to make things as symmetric as possible,
gives the coordinates (xi, yi; ζi) in patch i, i=1, 2, 3, with the overlaps

(xi+1, yi+1; ζi+1) = (y−1
i , xiy

−1
i ;−αxi − α−1yiζ

−1
i ) , (A.1)

where α= e
2πi
3 and 3+1 is understood as 1. Here, the ζ coordinates are fiber coordinates for S2.

We have not cared to write two separate patches for the fiber, since the one-point compactification
of C is trivial. The coordinates for the base manifold are the standard ones on CP 2. If one instead
considers the flag “turned inside out”, i.e. consider the complementary (normal) vector subspaces,
one is led to an alternative fibration, given by the coordinate transformations

(x̃i, ỹi; ζ̃i) = (ζ−1
i+1, ζi+2; yi+1) . (A.2)

These coordinates have identical overlap relations as the original ones. The transformation corre-
sponds to the action of the nontrivial element in the Z2 of outer automorphisms of SU(3).

We now want to examine some simple rational holomorphic maps from S2 to this manifold.
These maps should be “based”. We choose the base point condition (x, y; ζ)(∞)=(1, 1; 1), which
is the same in all patches. It is easy to find a basis for the second homotopy. The fiber S2 of course
has second homotopy Z, and so has the base manifold CP 2, being S5/U(1). The holomorphic
maps corresponding to one winding on the fiber, i.e. one of the simple magnetic charges, say α1,
are easily written down:





x1 y1 ζ1
x2 y2 ζ2
x3 y3 ζ3



 (z) =





1 1 z+A
z+B

1 1 z+B
z+C

1 1 z+C
z+A



 , (A.3)

where A+αB+α2C = 0. The easiest way of finding the maps corresponding to the other simple
root α2 is to apply the coordinate transformation (A.2) to the right hand side of (A.3) to obtain





x1 y1 ζ1
x2 y2 ζ2
x3 y3 ζ3



 (z) =





z+A
z+C

z+B
z+C 1

z+C
z+B

z+A
z+B 1

z+B
z+A

z+C
z+A 1



 . (A.4)
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The corresponding monopoles are the embedded ’t Hooft–Polyakov solutions, and it is easy to
deduce that the topology of these moduli spaces is C×C∗ ∼= R3×S1. A more interesting case is
the magnetic charge α1+α2. This map winds once around each of the primitive cycles. We write
down the most general ansatz possible, and then derive constraints on the parameters that enter:





x1 y1 ζ1
x2 y2 ζ2
x3 y3 ζ3



 (z) =





z+A
z+C

z+B
z+C

z+D
z+E

z+C
z+B

z+A
z+B

z+F
z+D

z+B
z+A

z+C
z+A

z+E
z+F



 . (A.5)

The outer automorphisms act as (A,B,C) ↔ (D,E, F ). Using the overlap functions we arrive at
the constraints between the six complex parameters:

A+D + α(B + E) + α2(C + F ) = 0 ,

AD + αBE + α2CF = 0 ,
(A.6)

so that we arrive at the counting of section 4 for the dimension of this moduli space — it has real
dimension eight.

When we investigate the topology, it is useful to consider holomorphic vector fields on the flag
manifold. Some of these will generate holomorphic isometries on the moduli space. The regular
vector fields we consider take the same form in all three patches (they are the only ones with this
property):

V
(1) = (1 − xy)

∂

∂x
+ (x− y2)

∂

∂y
− (α+ yζ + α−1xζ2)

∂

∂ζ
,

V
(2) = (y − x2)

∂

∂x
+ (1 − xy)

∂

∂y
+ (αy + xζ + α−1ζ2)

∂

∂ζ
.

(A.7)

There are also the translations on S2, inducing the vector field V (3) =x′(z) ∂∂x + y′(z) ∂∂y + ζ′(z) ∂∂ζ .
All of these transformations commute. The transformations induce transformations of the param-
eters A, . . . , F . These are better expressed in a basis where the vector fields act diagonally,

a = A+B + C , d = D + E + F ,
b = A+ αB + α2C , e = D + αE + α2F ,
c = A+ α2B + αC , f = D + α2E + αF .

(A.8)

Then V (3) only acts on a and d as translation, while, if we denote the induced action of i√
3
(αV (1)−

α−1V (2)) by δ+ and that of 1
3 (αV (1)+α−1V (2)) by δ−, the action on the moduli parameters is

δ+b = 2b , δ+e = 2e ,
δ+c = c , δ+f = f ,

δ−b = 0 , δ−e = 0 ,
δ−c = c , δ−f = −f ,

(A.9)

while a and d are inert. The constraints are

b + e = 0 ,

ae+ bd+ cf = 0 ,
(A.10)
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and they are preserved by all the transformations. The transformation δ+ generates the C∗ that
together with the C of V (3) forms R3×S1. The imaginary part of δ− is a U(1) isometry. We
can chose a location θ on the S1 by a finite action exp(iθIm δ+) on some given base point. The
parameters c and f are coordinates for the “inner part” of the moduli space. By considering the
action of this translation on the total moduli space, we conclude that the topology is

M ∼= R
3×

S1×R4

Z2
. (A.11)

The “inner” or “relative” moduli space is topologically R4. This is the topology of Taub–NUT
space with positive mass parameter.

Appendix B: Taub–NUT Space — Metric and Connections

This appendix contains a short summary about Taub–NUT space (see e.g. reference [43] for
more detailed discussions). Taub–NUT space is a member of a very restricted family of four-
dimensional regular hyperKähler manifolds with SO(3) isometry [43], that also includes the Atiyah–
Hitchin manifold (contained in the moduli space for magnetic charge twice a simple coroot), and
the Eguchi–Hansson manifold. The properties obtained from simple physical considerations, that
the metric asymptotically approaches R3×S1 and that the isometry is SU(2)×U(1), singles out
Taub–NUT as the internal moduli space for magnetic charges that are the sum of two simple
coroots with negative scalar product.

The metric may be written

g =
r +M

r −M
dr ⊗ dr + (r2 −M2)(σ1 ⊗ σ1 + σ2 ⊗ σ2) + 4M2 r −M

r +M
σ3 ⊗ σ3 , (B.1)

where the ranges of the coordinates are M ≤ r, 0 ≤ θ ≤ π, 0 ≤ φ < 2π and 0 ≤ ψ < 4π, and the
σi are left-invariant one-forms on S3 ∼= SU(2):

σ1 = cosψdθ + sinψ sin θdφ ,

σ2 = − sinψdθ + cosψ sin θdφ ,

σ3 = dψ + cos θdφ ,

(B.2)

with the dual vector fields vi, vi(σj)=δij :

v1 = cosψ
∂

∂θ
+

sinψ

sin θ

∂

∂φ
− cot θ sinψ

∂

∂ψ
,

v2 = − sinψ
∂

∂θ
+

cosψ

sin θ

∂

∂φ
− cot θ cosψ

∂

∂ψ
,

v3 =
∂

∂ψ
.

(B.3)

If we write the vierbein one-forms as er=fdr, ei=ciσi, the functions f , ci satisfy (prime denotes
differentiation with respect to r)

c′1
f

=
c21 − (c2 − c3)

2

2c2c3
and cyclic. (B.4)
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This equation enables us to calculate the curvature quite easily:

R0i =
1

2
εijkRjk

R01 = −k′1dr ∧ σ1 + (−k1 + k2 + k3 − 2k2k3)σ2 ∧ σ3 and cyclic,
(B.5)

where ki=
c′i
f . The first equation states that R is selfdual. The curvature may then be used in the

calculation of the index of the Dirac operator [33], using the Atiyah–Patodi–Singer index theorem
[44] and pushing the boundary to infinite radius.

When we consider matter zero-modes, we will need a U(1) connection on Taub–NUT space
with selfdual field strength. There is exactly one selfdual harmonic two-form (up to normalization).
It is

F = c

(

2M

(r +M)2
dr ∧ σ3 −

r −M

r +M
σ1 ∧ σ2

)

. (8.1)

The corresponding potential is

ω = c
r −M

r +M
σ3 . (8.2)

The coefficient c is determined by physical considerations.
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We examine general properties of superembeddings, i.e., embeddings of supermanifolds

into supermanifolds. The connection between an embedding procedure and the method

of non-linearly realised supersymmetry is clarified, and we demonstrate how the latter

arises as a special case of the former. As an illustration, the super-5-brane in 7 dimensions,

containing a self-dual 3-form world-volume field strength, is formulated in both languages,

and provides an example of a model where the embedding condition does not suffice to

put the theory on-shell.

http://arXiv.org/abs/hep-th/9711203v1
http://arXiv.org/abs/hep-th/9711203


T. Adawi, M. Cederwall, U. Gran, M. Holm, B.E.W. Nilsson: “Superembeddings. . .” . . . . . . . . . . . . . 

1. Introduction

Our understanding of string theory at the non-perturbative level has gone through a dramatic

improvement in recent years. Some of the key aspects of this development are connected to the

central rôle played by solitonic solutions of the low energy field equations, i.e., various brane

configurations that solve the field equations of the supergravity theories. By considering BPS

saturated solitonic solutions which preserve e.g. half the supersymmetry of the supergravity theory

in question, these supergravity theories can be shown to be related by duality transformations some

of which are intrinsically non-perturbative in nature. In fact, (almost) all consistent string and

supergravity theories, including 11-dimensional supergravity, are in this way believed to constitute

low-energy descriptions of one master theory, the so called M-theory, in either the weak or strong

coupling regime of some particular coupling constant in the moduli space of all couplings. An

overview of the subject, as well as further references, may be found e.g. in ref. [].

The known branes come in three main varieties†, p-branes, Dp-branes, and T5-branes, depend-

ing on whether the bosonic sector of the field theory on the world-volume of the brane contains

only scalars, scalars and vector gauge fields, or scalars together with a third rank anti-symmetric

self-dual tensor field strength. (Recently also other types of tensor fields and combination of such

have been introduced in these theories to solve certain specific problems []. However, this is of

no immediate interest for the considerations of this paper). For a review of the different kinds

of solitonic branes and their rôles in non-perturbative string theory, see ref. []. The scalar fields

appearing on the branes are immediately identifyable as Goldstone fields, or collective modes, cor-

responding to the translation symmetries that are broken when the brane is introduced into target

space-time. That is, one obtains one scalar field for each direction transverse to the brane. By

checking which supersymmetries get broken, or by viewing the brane as a supersurface embedded

in a target superspace, also the number of Goldstone fermions can be deduced. However, when su-

persymmetry requires the brane supermultiplet to contain also vectors or tensor potentials, there

is no analogously simple argument that explains their presence. We will have nothing new to say

about this problem in this paper.

From the theory of non-linear realisations (NR) we know that, although the branes fill out

multiplets realising all target space symmetries linearly, on the branes the unbroken symmetries

are linearly realised while the broken ones are realised non-linearly. In the context of open string

theory one knows that the supersymmetric field theory on Dp-branes involve vector multiplets and

are highly non-linear Born–Infeld type theories. Using duality arguments similar non-linearities

can be seen to arise for T5-branes containing self-dual third rank tensors in d = p + 1 = 6 brane

dimensions [,].

Bagger and Galperin [] have recently verified that the theory of non-linear realisations applied

to supermanifolds embedded into target supermanifolds with twice the number of anticommuting

coordinates naturally leads to Born–Infeld actions if vector multiplets are involved. This provides

† There are also branes associated with gravitational charges. We will not consider these in the present paper.
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a very nice explanation for the rather strange form of the Born–Infeld action as being a direct

consequence of the non-linearly realised broken supersymmetries. In this formalism one intro-

duces derivatives that transform in a well-behaved manner under the linearly as well as under the

non-linearly realised (super)symmetries. Consistency requirements on the constraints imposed on

superfields together with requirement of symmetry under the linearly as well as the non-linearly

realised supersymmetry imply the Born–Infeld non-linear action in the case the supermultiplet is

chosen to be a Maxwell multiplet in 4 dimensions.

Another recently developed approach giving similar results is the “doubly supersymmetric

geometrical approach” [,] or the “embedding formalism” []. In the latter approach one starts

from the torsion tensor in target superspace and considers the equation that arises when pulling

it back to the super-world-volume. By introducing a particular embedding constraint the torsion

pull-back equations can, in the only case analysed explicitly so far namely the T5-brane in 11

dimensions, be seen to give rise to exactly the same non-linear theory as can be argued for from

its relation via duality to the Born–Infeld action of a D4-brane. However, in this formalism the

non-linearly realised supersymmetry plays no rôle whatsoever, and it is not clear that the non-

linearities of the action actually have their origin in some broken symmetries, although this clearly

must be the case [].

It is the purpose of this paper to clearify some aspects of the connection between these two

approaches and demonstrate that also for the T5-brane the non-linearities of the action stem

from an underlying set of broken symmetries. In section  we discuss some basic properties of

superembeddings using as an example some results from the theory of non-linear realisations as

well as from the theory of superembeddings applied to the T5-brane, with a (6|8) super-world-

volume, embedded into a (7|16) target superspace. Here the notation (m|n) refers to a superspace

with m commuting and n anticommuting coordinates. Section  gives the details of this embedding

using the theory of non-linear realisations along the lines of Bagger and Galperin []. This formalism

turns out to generate a rather complicated equation that the dimension zero components of the

torsion tensor induced on the super-world-volume must satisfy. Although this equation can be

solved explicitly, further analysis of the system, e.g. deriving the field equations, seems cumbersome

and is not carried out here. Instead we turn in the following sections to an analysis of this T5-

brane by means of the embedding formalism. In section  we show that the theory of non-linear

realisations is just a special case of the embedding formalism, obtained if certain for this formalism

unconventional choices of intrinsic torsion components are made. In section  we then show that

the torsion pull-back equation can be completely analysed and seen to lead to the non-linearities

characteristic of T5-brane field theories, as already demonstrated for the T5-brane embedded in 11

dimensions by Howe, Sezgin and West []. In a final section we summarise our results and present

the conclusions.
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2. Superembeddings

In this section we will consider superembeddings [,] from a general point of view, using some

explicit results from subsequent sections to examplify the ideas but leaving the details of special

applications to the later sections. The different parametrisations of the embedding matrix to be

used in later sections are introduced, and the geometric properties of the embeddings are analysed,

eventually leading to the torsion pullback equation, introduces in ref. [].

Let us consider an arbitrary embedding (M , h) f
→֒ (M , g), where the two supermanifolds have

dimensions (m|n) and (m|n) respectively. The signature of the bosonic metric is arbitrary at the

moment but later on we will restrict ourselves to (D−1, 1) signature. We will use standard notation

[] for the local coordinates of the two supermanifolds, i.e., zM = (xm; θµ) and ZM = (Xm; Θµ).

We now introduce the embedding matrix∗ EA
A, defined in terms of canonical 1-forms θ by

θ̃ := f∗θ = f∗θ = eA
EA

AEA . (.)

Here, eA and EA are orthonormal basis vectors on the cotangent space of the world-volume and

the tangent of the target space, respectively. We refer to Appendix A for more details of notation.

The basis vectors EA := f∗eA span the tangent space of the embedded supermanifold. In order

to have a complete basis for the entire tangent space of the target space, we may also introduce

normal vectors denoted EA′ . We will use an overlined index representing a composite index for the

pair (A,A′). We will also introduce a set of dual basis vectors by

< E
B
,E A >= δ

B
A . (.)

With these objects at hand we have the possibility of splitting the canonical 1-form into tangential

and normal terms,

θ = θ + θ′ ≡ E
A
EA + E

A′

EA′ . (.)

These 1-forms now serve as projectors of vectors down to the tangent and normal parts respectively,

i.e., X‖ = θ(X), X⊥ = θ′(X). By introducing a target space Lorentz matrix u
B

A relating the basis

EA to a frame connected to the embedded surface, it is convenient to split the embedding matrix

as

EA
A = EA

Bu
B

A . (.)

Concerning the basis EA′ of normal vectors, the choice is completely arbitrary and physically

irrelevant, and it will soon be clear that in explicit parametrisations we can always choose them

to be EA′
A = uA′

A, i.e., as part of a Lorentz matrix.

∗ Note the difference in notation compared to refs. [,], where the matrix E does not denote the embedding
matrix, the latter being denoted EA

A.



T. Adawi, M. Cederwall, U. Gran, M. Holm, B.E.W. Nilsson: “Superembeddings. . .” . . . . . . . . . . . . . 

As a starting point for a general superembedding, the orientation in target superspace of the

super-world-volume tangent space is parametrised by a point in the super-grassmanian

SGr[(m|n); (m|n)] :=
OSp(m|n)

OSp(m|n) × OSp(m−m|n− n)
, (.)

i.e., there are m(m−m) + n(n− n) bosonic parameters and m(n− n) + n(m−m) fermionic ones.

One way of representing these degrees of freedom is to introduce the four fields

ma
b′ ↔ m(m−m) ,

hα
β′

↔ n(n− n) ,
χa

β′

↔ m(n− n) ,
Eα

b′ ↔ n(m−m) ,

(.)

and locally represent the embedding by

EA
B = EA

Bu
B

B =

(

ua
a +ma

b′ub′
a χa

α′

uα′
α

Eα
b′ub′

b uα
α + hα

β′

uβ′
α

)

. (.)

If we put this together with the normal vectors we get

E
A

B =









(

δa
b ma

b′

0 δa′
b′

) (

0 χa
β′

0 0

)

(

0 Eα
b′

0 0

) (

δα
β hα

β′

0 δα′
β′

)









, (.)

with the inverse

(E−1)
A

B =









(

δa
b −ma

b′

0 δa′
b′

) (

0 −χa
β′

0 0

)

(

0 −Eα
b′

0 0

) (

δα
β −hα

β′

0 δα′
β′

)









. (.)

We notice that the information of the embedding lies entirely in the matter fields, and that u
A

B

can be chosen arbitrarily. As we will see in the case of non-linear realisations in sections  and ,

they may for example be chosen to be just δ
A

B .

In all applications we will choose the part of the embedding matrix not containing the fields

of (.), i.e., the u’s, to be part of a Lorentz matrix. This choice is always possible, recalling that

the essential property of the embedding matrix is that it defines the orientation of the embedded

hypersurface, so that different embedding matrices with identical span of the vectors EA represent

the same point in the grassmannian (.), and thus the same embedding. To put it concretely, this
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degree of arbitrariness in the embedding matrix is identified with the invariance of its definition

(.) under
eA → eBMB

A ,

EA
A → (M−1)A

B
EB

A ,
(.)

allowing us to go to a representation (.) with lorentzian u’s.

The canonical 1-forms are now expressed in terms of the matter fields in the following way:

θχ = θ0 +m′ + E + χ+ h ,
θ′χ = θ′0 −m′ − E − χ− h ,

(.)

and if we define new vielbeins by E
A

:= u
A

BEB , we see that

m′ = Eama
b′Eb′ ,

E = EαEα
b′Eb′ ,

χ = Eaχa
β′

Eβ′ ,

h = Eαhα
β′

Eβ′ .

(.)

An example of the present parametrisation of the embedding matrix is given by the NR case

(section ), where we work in a supersymmetric supermanifold with n = n/2. There we will see

that the fields of (.) are simply

ma
b′ = ∇aφ

b′ ,
Eα

b′ = ∇αφ
b′ − i(Γb′ψ)α ,

χa
β′

= ∇aψ
β′

,
hα

β′

= ∇αψ
β′

,

(.)

where the bosonic matter fields φb′ are shifted [] as

φb′ = xb′ + i
2
θΓb′ψ . (.)

We also see that on imposing the embedding condition [,]

Eα
b = 0 , (.)

(this condition, which is a basic geometric relation reducing the number of field components in the

embedding formalism, will be more closely examined in section ) we get a relation []

ψβ′

= − i
m−m

(Γc′)
β′α∇αφ

c′ (.)
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between the bosonic fields φb′ and the fermionic ψβ′

, which are the matter fields containing the

independent degrees of freedom of the embedding ((m −m) and (n− n) respectively). Of course,

since these fields are both superfields, they contain in general too many physical degrees of freedom.

This problem will be eliminated by analysing the torsion equation together with the embedding

condition.

Returning to our study of the embedding matrix, we note that with the above parametrisation

it is only lorentzian for all matter fields equal to zero. It is easy to convince oneself that the field

ma
b′ can always be rotated away by a (target space) Lorentz tranformation:

ma
bũb

c := ua
c +ma

b′ub′
c , (.)

so that the m(m−m) parameters of the orientation of the bosonic embedding are absorbed into

ũ. The price to be paid for this change of frame is that the fermions rotate accordingly, and the

lower right hand corner of (.) changes. Again, it is possible to retain the form uα
α +hα

β′

uβ′
α by

utilising the invariance (.) with a non-lorentzian matrix M . The embedding matrix then takes

the form []

E
A

A =









(

ma
bub

a

ua′
a

) (

χa
α′

uα′
α

0

)

0

(

uα
α + hα

β′

uβ′
α

uα′
α

)









, (.)

where the u’s are again lorentzian (the tilde is dropped). This Lorentz matrix should of course

not be identified with the one in (.), neither should the fields denoted by identical symbols.

We have also dropped the Eα
a term as it will vanish due to the embedding condition. The new

parametrisation also involves a new choice of basis for the normal vectors.

Equation (.) is the form of the embedding matrix to be used in the rest of the present

section, and in section . The invariance (.) used to move between the two versions (.) and

(.) of the embedding matrix involves a redefinition of the intrinsic vielbeins eA, and we may

expect the torsion tensors in the two versions of the theory to exhibit differences, which is what

we will see in the following sections. It is striking that the seemingly different theories, from a

geometric point of view, are related by a transformation that modifies the intrinsic world-volume

geometry by matter fields. We will not analyse the transformations in detail, but note that they

may be worth further study.

The inverse of the modified embedding matrix is

EA
A =

(

(ua
b(m−1)b

a , ua
a′

) ( 0 , −ua
b(m−1)b

aχa
α′

)
0 (uα

α , uα
α′

− uα
βhβ

α′

)

)

, (.)
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and the canonical 1-forms therefore take the form

θχ = θ0 + χ+ h ,
θ′χ = θ′0 − χ− h ,

(.)

where
χ = Ea(m−1)a

bχb
γ′

Eγ′ ,

h = Eαhα
β′

Eβ′ .
(.)

Here one should also mention that none of the free parameters in ma
b′ ends up in ma

b; the latter

becomes determined completely in terms of h.

This is all we will say at this point about the parametrisation of the embedding matrix. We

will now discuss the origin of the torsion pull-back equation and in later sections look at some

of its solutions. To facilitate the understanding of the torsion equation we will point out some

conceptual difficulties that may appear in connection with it. One problem is that when working

with an embedding of the type (M , h) f
→֒ (M , g) we have to consider two different metrics on M :

on the one hand the a priori (intrinsic) metric on the world-volume h and on the other the metric

induced by the embedding, g = f∗g. The problem is that we no longer have one connection on M

but two, each compatible with one distinct metric. We will use the notation D and ∇, schematically

fulfilling
Dh = 0 ,
∇g = 0 .

(.)

Another upcoming problem is connected to the fact that the embedding is not Lorentz, unless

the matter fields vanish. In order to distinguish the situations, we will denote the matter fields

collectively by χ, and let a lorentzian embedding correspond to χ→ 0.

In deriving the torsion equation, we start from the Gauss–Weingarten equations† []

∇XY = ∇XY + K ′(X,Y ) ,
∇XY

′ = ∇′
XY

′ + K (X,Y ′) ,
(.)

where we have used the notation X for tangential vectors and X ′ for normal vectors. We see from

these equations that the covariant derivative splits into a tangential derivative, a normal derivative

and two tensors which are the so called extrinsic curvatures of the embedding, also known as the

second fundamental form∗. These equations are purely tensorial and independent of the form of the

embedding. They are also independent of the intrinsic metric h on the world-volume. If we now

set Y = EA we get

∇E
A

=: Ω
A

BE
B

=

(

ΩA
B KA

B′

KA′
B ΩA′

B′

) (

EB

EB′

)

. (.)

The reason for taking E
A

here instead of E
A

is that we need to make a distinction between whether

the embedding is Lorentz or not. If the embedding is Lorentz then all quantities in these equations

† Ref. [] gives similar equations, that in addition to our terms on the right hand side also contains the entities
L , L

′ which will soon be defined. The difference, as will be clear from the following discussion, resides
entirely in the use of induced contra intrinsic connection in the derivative.

∗ The term is reserved for K
′, but K is determined from it by g(K ′(X,Y ),Z′)+g(X,K (Y,Z′))=0.
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will lie in the algebra spin(m) but not otherwise. We will therefore make a distinction between

the extrinsic curvatures of the two types of embeddings by denoting the extrinsic curvature of a

Lorentz embedding by roman letters and a matter triggered embedding by calligraphic ones. From

the Gauss–Weingarten equations it follows that

KAB
C′

=< ∇A(EB),E C′

> . (.)

This means that, as the E
A

tend to E
A

as χ→ 0, the extrinsic curvature will tend to the Lorentz

one, i.e., KAB
C′

|χ=0 = KAB
C′

. Of course

KAB
C′

=< ∇A(EB), EC′

>=< ∇A(uB), uC′

> , (.)

where uB = uA
AEA and uA′

= EAuA
A′

. Now since we will use the intrinsic world-volume metric

h as an auxiliary field in the forthcoming torsion equation, we need a relation between the two

connections on M . Let us define a difference operator of the two of them by

L := ∇− D . (.)

This operator is of course a tensor. Proceeding as for the extrinsic curvature we let L |χ=0 =: L.

We will also extend our covariant derivatives on M to act on world-volume vectors as well as

target space vectors and denote them as ∇ and D . This enables us to note the following important

relations
∇(θ̃) = K ′ ,
D(θ̃) = L + K ′ (.)

(these are tensor equations, so there is no wedge product involved), from which we see that the

tensors can be written
LAB

C = DA(EB
C)EC

C ,

KAB
C′

= DA(EB
C)EC

C′

,
(.)

and consequently
LAB

C = DA(uB
C)uC

C ,

KAB
C′

= DA(uB
C)uC

C′

.
(.)

Let us introduce yet another covariant derivative in order to get relations between these fields:

D̂ = D |diag + X̂ , (.)

where

X̂
A

B :=

(

LA
B 0

0 LA′
B′

)

, (.)
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and where the connection in the first term on the right hand side contains the target space con-

nection projected on the part not mixing tangential and normal directions. Let us also define

X
A

B := D(E
A

C)EC
B ≡

(

LA
B KA

B′

KA′
B LA′

B′

)

. (.)

This notion is natural because it will tend to L and K as χ→ 0. We now get the relation between

the fields

X
A

B = X̂
A

B + D̂(E
A

C)(E−1)
C

B + E
A

CKC
D′

(E−1)D′

B + E
A

C′

KC′

D(E−1)D
B , (.)

from which, if we look at our parametrisation of the embedding matrix in particular, we now get

the following relations

Lb
c = Lb

c + (D̂mb
d)(m−1)d

c ,
Lb

γ = χb
β′

Kβ′
γ ,

Lβ
c = 0 ,

Lβ
γ = Lβ

γ + hβ
β′

Kβ′
γ ,

Kb
c′ = mb

cKc
c′ ,

Kb
γ′

= D̂χb
γ′

− (D̂mb
c)(m−1)c

dχd
γ′

− χb
β′

Kβ′
γhγ

γ′

,

Kβ
c′ = 0 ,

Kβ
γ′

= Kβ
γ′

+ D̂hβ
γ′

− hβ
β′

Kβ′
γhγ

γ′

,
Kb′

c = Kb′
d(m−1)d

c ,
Kb′

γ = 0 ,
Kβ′

c = 0 ,
Kβ′

γ = Kβ′
γ ,

Lb′
c′ = Lb′

c′ ,
Lb′

γ′

= −Kb′
d(m−1)d

eχe
γ′

,
Lβ′

c′ = 0 ,

Lβ′
γ′

= Lβ′
γ′

−Kβ′
γhγ

γ′

.

(.)

Some of the zeroes are directly related to the embedding condition (.). The virtue of these

relations is that they display explicitly which properties of the geometry are induced by matter

fields. They are important because we will use them in the process of solving the torsion equation.

We now turn to the issue of deriving the torsion equation, which is the final subject of this section.

If we look at the Gauss–Weingarten equations we see that

T (X,Y ) := ∇XY −∇YX − [X,Y ] = T (X,Y ) + T ′(X,Y ) , (.)
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where T (X,Y ) is the induced torsion inherited from the connection on TM and

T ′(X,Y ) := K
′(X,Y ) − K

′(Y,X) (.)

is called the extrinsic torsion of the embedding. But we know that we have a relation between the

induced torsion and the intrinsic torsion denoted T from the relation of the two connections on

M . This relation is

T (X,Y ) = T (X,Y ) + L (X,Y ) − L (Y,X) , (.)

which together with the relation

D ∧ θ̃ = ∧L + T ′ = −T + T + T ′ (.)

(the notation ∧L meaning the antisymmetric part) finally yields the torsion equation in the form

D ∧ θ̃(X,Y ) + T (X,Y ) = T (X,Y ) , (.)

where of course X,Y everywhere are super-world-volume tangent vectors. This is nothing but the

usual torsion equation that figures in the physics literature [,]. Putting X = EA and Y = EB

and contracting with EC we get it in the more transparent form

DAEB
C − (−1)AB

DBEA
C + TAB

C
EC

C = (−)A(B+B)
EB

B
EA

ATAB
C . (.)

In order to solve this equation we will project it onto the tangent and the normal directions,

respectively, giving

2L[AB)
C + TAB

C = TAB
C (.)

and

2K[AB)
C′

= TAB
C′

, (.)

where the graded anti-symmetrisation is defined by V[AB) := 1
2 (VAB − (−1)ABVBA). Now for the

parametrisation in eq. (.) we have the following induced torsion components (if the target space
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is flat):
Tab

c = i[χa(Γ
d)χb](m

−1)d
c ,

Tab
γ = 0 ,

Taβ
c = −i[χa(Γ

d)hβ ](m−1)d
c ,

Taβ
γ = 0 ,

Tαβ
c = −i[(Γd)αβ + hα(Γd)hβ ](m−1)d

c ,
Tαβ

γ = 0 ,

Tab
c′ = 0 ,

Tab
γ′

= −i[χa(Γ
d)χb](m

−1)d
eχe

γ′

,
Taβ

c′ = −iχa(Γ
c′)β ,

Taβ
γ′

= i[χa(Γ
d)hβ ](m−1)d

eχe
γ′

,

Tαβ
c′ = −i2h(α(Γc′)β) ,

Tαβ
γ′

= i[(Γd)αβ + hα(Γd)hβ ](m−1)d
eχe

γ′

.

(.)

The Γ matrices have been split according to appendix B, and summed α′ indices are suppressed,

e.g. hα(Γd)hβ ≡ hα
α′

(Γ̄d)α′β′hβ
β′

. Together with the expressions for the fields K , L and of course

T it is just to begin solving for the matter fields. We already here see that the solutions will depend

on the chosen intrinsic world-volume torsion T , but we will come back to this in later sections. If

we instead look at the case of our first parametrisation, given in eq. (.), where we had a direct

coupling to the NR case, we get

Tab
c = iχa(Γc)χb ,

Tab
γ = 0 ,

Taβ
c = −iχa(Γ

c)hβ ,
Taβ

γ = 0 ,
Tαβ

c = −i[(Γc)αβ + hα(Γc)hβ ] ,
Tαβ

γ = 0

(.)

(again, although the fields denoted by the same letters in (.) and (.) are related by field

redefinitions, they should by no means be identified), which we will see in later sections is nothing

but the relations for the torsion derived from the algebra of the induced covariant derivatives.

3. The D = 6 tensor multiplet and non-linear realisations

In this section we will review the basic steps of the theory of non-linear realisations [], which is a

systematic way of studying the properties of Goldstone fields. It is well-known that the spontaneous

breaking of supersymmetry gives rise to a massless spin- 1
2 Goldstone fermion []. This fermion

then belongs to the massless multiplet of the residual unbroken supersymmetry. However, the

choice of the Goldstone multiplet is not unique. The partial breaking of N = 2 supersymmetry to

N = 1 in four dimensions was studied in [], for three different multiplets. We will use non-linear
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realisations to describe the spontaneous breaking of N = 1 supersymmetry in D = 7 to N = (1, 0)

in D = 6 and pick the self-dual tensor multiplet in 6 dimensions [,] as the Goldstone multiplet.

Let M
(7|16) be a flat N = 1 target superspace with local coordinates ZM = (Xm,Θµ). Our

starting point is the 7-dimensional N = 1 supersymmetry algebra

{Qα, Qβ} = (Γa)αβPa . (.)

Making the 7→6+1 split, using the conventions of appendix B, this algebra reads:

{Qi
α, Q

j
β} = εij(γa)αβPa ,

{Qi
α, S

β
j } = δα

βδi
jZ ,

{Sα
i , S

β
j } = εij(γ

a)αβPa .

(.)

Here εij is the invariant tensor of the SU(2) automorphism group. From a 6-dimensional point of

view, this is an N = (1, 1) algebra with a central charge Z, the momentum in the seventh direction.

We now consider the partial breaking of this N = (1, 1) algebra down to N = (1, 0). Let Qi
α be

the unbroken N = 1 supersymmetry generator and Sα
i its broken counterpart. A parametrisation

of the N = 1 target superspace M
(7|16) suitable for our problem is

Ω = exp[i(xaPa + θα
i Q

i
α)] exp[i(yZ + ψi

αS
α
i )] . (.)

Now the spinor ψi
α = ψi

α(x, θ) is the Goldstone superfield associated with the broken generator

Sα
i , and the scalar y = y(x, θ) is the Goldstone superfield associated with the central charge Z.

Here we have employed the ”static gauge” for the splitting of target space coordinates:

Xm = xm , X6 = y(x, θ) ,
Θµ = θµ

i , Θµ′

= ψi
µ(x, θ) .

(.)

Note that this construction naturally corresponds to the embedding M (6|8) →֒ M
(7|16), where the

Goldstone fields are bosonic and fermionic coordinates describing the shape of the supersurface

M (6|8), which automatically breaks half of the supersymmetry.

The S-supersymmetry acts with g=exp(iηS) on Ω by left multiplication, gΩ = Ω′, which

induces a transformation on the bosonic coordinates

δηx
a = − i

2
ηγ̄aψ . (.)
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This in turn makes the transformations of the Goldstone fields contain non-linear terms, in addition

to the usual shifts:
δηψ

i
α = ηi

α + i
2ηγ̄

aψ∂aψ
i
α ,

δηy = − i
2ηθ + i

2ηγ̄
aψ∂ay .

(.)

Since the Cartan 1-form Ω−1dΩ takes its value in the supersymmetry algebra, we can para-

metrise it in the following way

Ω−1dΩ = i[EaPa + E6Z + Eα
i Q

i
α + Ei

αS
α
i ] . (.)

This expansion gives the covariant world-volume Goldstone 1-forms:

Ea = dxa − i
2 [dθγ̃aθ + dψγ̄aψ] , Eα

i = dθα
i ,

E6 = dy − i
2 [dθψ + dψθ] , Ei

α = dψi
α .

(.)

Here we use the notation γ̃a := ǫij(γa)αβ and γ̄a := ǫij(γ
a)αβ . The vielbein matrix EM

A is found

from the expansion of the world-volume 1-form EA = (Ea, Eα
i ) with respect to the coordinate

differential dzM = (dxm, dθµ
i ) of the world-volume, EA = dzMEM

A. The N = 2 derivatives

induced by the Goldstone superfields are then given by†

∇A = (E−1)A
M∂M . (.)

These covariant derivatives can be explicitly written as:

∇a = (E−1)a
m∂m ,

∇i
α = Di

α + i
2 (Di

αψ)γ̄aψ∇a .
(.)

It is interesting to note that the covariant derivative ∇a satisfies the implicit relation

∇a = Da + i
2
(Daψ)γ̄aψ∇a , (.)

which simply follows from solving for ∂m above. This expression then most easily gives the expres-

sion for ∇i
α above, which otherwise, when directly solved for as the dual of (.), is expressed in

terms of the bare derivatives ∂α. Here Di
α and Da are the ordinary flat N = 1 covariant derivatives.

It is then straightforward to calculate the algebra of the N = 2 covariant derivatives []:

[∇a,∇b] = −i(∇aψ)γ̄c(∇bψ)∇c ,

[∇a,∇
i
α] = i(∇i

αψ)γ̄b(∇aψ)∇b ,

{∇i
α,∇

j
β} = iǫijγa

αβ∇a + i(∇i
αψ)γ̄a(∇j

βψ)∇a ,

(.)

† These induced covariant derivatives, denoted ∇ in the present paper (see appendix A) equal those denoted
D in ref. [].



T. Adawi, M. Cederwall, U. Gran, M. Holm, B.E.W. Nilsson: “Superembeddings. . .” . . . . . . . . . . . . 

in accordance with eq. (.).

It is convenient to introduce the scalar superfield

Φ := 1
2
θψ − iy , (.)

which, in particular, implies:

E6 = idΦ − idθψ . (.)

This shift, anticipated in section 2, is necessary in order to obtain a scalar superfield under the

6-dimensional supersymmetry algebra. Note that at this stage there is no relation between the

Goldstone fields. We now impose the irreducibility condition

Ei6
α = 0 , (.)

or equivalently

ψi
α = ∇i

αΦ . (.)

In the next section we will see that this constraint is inherent in the embedding formalism, where

it is part of the embedding condition Eα
a = 0. In the present treatment its remaining components

Eα
a vanish trivially.

The on-shell self-dual tensor multiplet in 6 dimensions is given by

(1, 0) ⊕ 2(1
2
, 0) ⊕ (0, 0) ↔ A+

ab ⊕ ψi
α ⊕ φ , (.)

where ψi
α and φ are the leading components of the spinor Goldstone superfield and the shifted

scalar superfield, respectively, and where we have used the standard labeling of the massless par-

ticles by the helicity states of the little group Spin(4)≈ SU(2)×SU(2). The minimal N = (1, 0)

supersymmetry in 6 dimensions does indeed admit this tensor multiplet []. Here A is a 2-form

potential coming from the symmetric bispinor superfield []

Fαβ := 1
2
∇(αi∇

i
β)Φ := ∇αβΦ , (.)

which corresponds to a self-dual field strength Fαβ = 1
6 (Γabc)αβFabc. It has been suggested []

that there might be an extension of the N = 2 supersymmetry which associates a Goldstone-like

symmetry with this field and the tensor gauge field might itself be a Goldstone field.
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To describe the on-shell self-dual tensor multiplet, the superfield Φ has to be further con-

strained. This constraint is most easily expressed in terms of the N = 2 covariant derivatives. An

appropriate constraint can be found from the decomposition∗ []

∇i
α∇

j
β ≡ −1

2
T ija

αβ ∇a + ǫij∇αβ + ∇
(i
[α∇

j)
β] . (.)

Let us first consider the linear case. This decomposition then reads

Di
αD

j
β ≡ i

2
ǫij(γa)αβ∂a + ǫijDαβ +D

(i
[αD

j)
β] , (.)

since the representation (10,3) vanishes, D
(i
(αD

j)
β) ≡ 0. It is easily shown [] that the constraint

D
(i
[αD

j)
β]Φ = 0 , (.)

postulating the absence of fields in the representation (6,3), describes the on-shell self-dual tensor

multiplet.

Turning to the full non-linear case again, we make the assumption, later to be verified, that

the constraint generalises as

∇
(i
[α∇

j)
β]Φ = 0 . (.)

The world-volume torsion is given by the implicit equation

{∇i
α,∇

j
β} =: −T ij a

αβ ∇a = iǫij(γa)αβ∇a + i(∇i
αψ)γ̄a(∇j

βψ)∇a . (.)

Note that this is a highly non-linear equation, since the fact that ψi
α = ∇i

αΦ implies that also the

right hand side contains torsion. We now proceed to give an explicit expression for this component

of the induced torsion on-shell. Using the constraint above and acting on the scalar superfield Φ,

we get the torsion equation on the form

2T ij
αβ = γij

αβ + (T ik
αγ + ǫikFαγ)γγδ

kl (T jl
βδ + ǫjlFβδ) , (.)

where T ij
αβ := − 1

2T
ij a
αβ ∇aΦ and γij

αβ := iǫij(γa)αβ∇aΦ. The crucial point is that the totally sym-

metric representation (10,3) drops out of the torsion after the on-shell constraint is imposed, and

therefore

T ija
αβ = ǫijTαβ

a . (.)

∗ We label the irreducible parts of the decomposition as (4,2)⊗(4,2)≡(6,1)⊕(10,1)⊕(6,3)⊕(10,3), reflecting
the group structure Spin(1,5)×SU(2).
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The torsion equation can then be written as the matrix equation

2T = γ + (T + F )γ(F − T ) , (.)

by extracting an overall ǫij . It is convenient to introduce a matrix A such that A2 := γ. Then let

B := AFA and X := ATA. The torsion equation now reads

2X = A4 + (X +B)(B −X) , (.)

with the solution

X = −1 +
√

(1 +A4 +B2) . (.)

Note that A4 = (∇Φ)2. In the weak-field expansion we get

X =

∞
∑

n=1

(

1
2
n

)

A4n +

∞
∑

n=1

(

1
2
n

)

(1 +A4)
1
2
−2nB2n . (.)

The torsion is then explicitly given by

T = 1
2
γ +

∞
∑

n=1

(

1
2

n+ 1

)

(∇Φ)2γ +

∞
∑

n=1

(

1
2
n

)

(1 + (∇Φ)2)2n−1F (γF )2n−1 . (.)

It is essential for obtaining Tαβ
a that it is possible to extract a factor ∇Φ. To check that the super-

symmetry algebra closes on the self-dual tensor multiplet it is sufficient to calculate ∇α∇β∇γΦ.

This check is cumbersome due to the fact that Taα
b is given by a linear equation which in turn

depends on Tαβ
a. From the solution (.), we see that the supersymmetry transformations of the

component fields will be extremely non-linear. However, no more fields are generated. Hence our

N = 2 covariant constraint, eq. (.) is correct, and puts the theory on-shell.

We conclude that the N = (1, 0) self-dual tensor multiplet in 6 dimensions can indeed be

given an interpretation as a Goldstone multiplet for the chirally broken N = (1, 1) (or, actually 7-

dimensional) supersymmetry, which is natural from a brane viewpoint. Since there is no lagrangian

formulation of the theory (without the introduction of auxiliary fields [], which however do not

seem to have any natural interpretation in the present framework), the program pursued for e.g.

the Maxwell multiplet in ref. [], where a lagrangian formulation was derived, has no counterpart

for this supermultiplet. The constraint (.), which is the most naive covariantisation of the

irreducibility constraint of the linear theory, turns out to be consistent, and encodes the full non-

linear field equations. Due to the complicated nature of the torsion, given by an implicit relation
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(.) solved as (.), the derivation of the field equations for the component fields becomes

cumbersome, and will not be performed here. We note that the explicit form of the torsion may

be summarised as a formal square root, an observation that probably is connected to the relation

with Born–Infeld theory.

4. Non-linear realisations in the embedding formalism

In this section we review some of the salient features of the embedding formalism, as applied

to the superembedding of the 5-brane in D = 7. The “embedding formalism” [] or the “doubly

supersymmetric approach” [,] to describe p-brane dynamics† are based on a geometrical condition

specifying the superembedding of a world-volume into target space. This condition can furthermore

be obtained from a ”generalised geometrical action principle” []. The power of the formalism

was demonstrated in [] for the T5-brane in 11 dimensions, where the embedding condition was

postulated and supersymmetric equations of motion obtained before a complete supersymmetric

action for them was constructed [].

Consider the flat target superspace M
(7|16) locally parametrised with coordinates ZM =

(Xm,Θµ), and introduce the supersymmetric cotangent basis 1-forms in target space

Πm = dXm − i
2dΘΓmΘ ,

Ξµ = dΘµ .
(.)

An arbitrary frame is obtained by SO(1,6) rotations

Ea = Πmum
a = dZMEM

a ,
Eα = Ξµuµ

α = dZMEM
α .

(.)

Here um
a and uµ

α are the “Lorentz harmonics”. The embedding matrix EA
A is defined as the

pullback of the target space 1-form EA onto the world-volume:

EA
A := EA(f∗EA) = EA

M (∂MZM )EM
A = (∇AZ

M )EM
A . (.)

Here ∇A is the induced covariant derivative on the world-volume. The essential ingredient of the

doubly supersymmetric approach is the ”geometro-dynamical condition” [,], or the embedding

condition []

Eα
a = 0 . (.)

Geometrically, this is simply the requirement that, at any point of M , the odd tangent space

to M lies entirely within the odd tangent space to M . In a number of interesting cases [], the

† We do not strictly want to call these separate formalisms; rather we would like to reserve the former term
for the specific procedure of extracting information about the dynamics from the torsion equation.
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integrability condition for this constraint is so strong that it reproduces all the equations of motion

for the extended object. This happens e.g. for the T5-brane in D = 11 [,]. In the next section,

however, we show that the embedding condition alone is not sufficient to put the D = 7 5-brane

multiplet on-shell. It has to be augmented by a suitable constraint, as conjectured in ref. [].

The embedding matrices can be read off from the induced vielbeins on the world volume.

Expressed in terms of the Goldstone fields, they are, as mentioned in section 2:

Ea
a = δa

a + i(∇aΦ)δ6
a ,

Eα
α = δα

α + (∇αΘα′

)δα′
α ,

(.)

and

Ea
α = (∇aΘα′

)δα′

α . (.)

The embedding condition reads explicitly

E
ia
α = ∇i

αX
a − i

2
(∇i

αΘ)ΓaΘ = 0 . (.)

In particular, E i6
α = 0 gives the D = 7 non-linear ”master constraint” of []:

ψi
α = ∇i

αΦ , (.)

(ψ being the normal spinor coordinate as in eq. (.)) as advertised in section 2. We know that the

linearised version of the above constraint is not sufficient to put our theory on-shell. In the next

section we show that this is also true at the non-linear level, without using a particular gauge, e.g.

the static gauge.

Turning now to the induced world-volume torsion, it can be calculated from the integrability

condition for the embedding matrix, ∇(αEβ)
a = 0, which gives

iTαβ
c
Ec

c = Eα
α
Eβ

β(Γc)αβ . (.)

This is also known as the ”twistor constraint” since Eα
α = ∇i

αΘα is a twistor-like bosonic superfield.

The world-volume torsion is then given by the equation

iT ij a
αβ = ǫij(γa)αβ + ǫkl(∇

i
α∇

k
γΦ)γa(∇j

β∇
l
δΦ) (.)

(see eq. (.)), which is identical to the one obtained in the non-linear realisation formalism.
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5. The equations of motion

We are now going to derive the equations of motion for the super-5-brane in 7 dimensions. As

target space we will choose a flat D = 7 superspace, i.e., all torsion components vanish except for

Tαβ
c = −i(Γc)αβ . (.)

The intrinsic world-volume geometry is chosen to be N = 1, d = 6 conformal supergravity [] and

the constraints that we will need in order to obtain the equations of motion are

Tαβ
c = −i(Γc)αβ (.)

and

Tαβ
γ = Tαb

c = Tab
c = 0 . (.)

The fields occurring in the following equations are those found in the parametrisation (.) of

the embedding matrix. We start by extracting the information hidden in (.) using the constraints

(.) and (.). We thus obtain

(i) D̂ [amb]
c = i

2 (χaΓcχb) − L[ab]
dmd

c ,

(ii) m[a
dKb]d

c′ = 0 ,

(iii) Tab
γ = 2χ[a

β′

Kb]β′
γ ,

(iv) D̂ [aχb]
γ′

= −χ[a
β′

Kb]β′
γhγ

γ′

− L[ab]
cχc

γ′

,

(v) D̂βma
c = i(χaΓchβ) − Lβa

d(m−1)d
c ,

(vi) ma
dKβd

c′ = i(χaΓc′)β ,

(vii) Taβ
γ = −χa

β′

Kββ′
γ − hβ

β′

Kaβ′
γ − Laβ

γ ,

(viii) D̂ahβ
γ′

− D̂βχa
γ′

= Lβa
dχd

γ′

+ hβ
β′

Kaβ′
γhγ

γ′

+χa
β′

Kββ′
γhγ

γ′

−Kaβ
γ′

,
(ix) (Γd)αβmd

c = (Γc)αβ + (hαΓchβ) ,

(x) 0 = h(α(Γc′)β) ,

(xi) L(αβ)
γ + h(β

β′

Kα)β′
γ = 0 ,

(xii) D̂(αhβ)
γ′

= i
2 (Γc)αβχc

γ′

+ h(α
β′

Kβ)β′
γhγ

γ′

−K(αβ)
γ′

.

(.)

If we go through these equations we see that (i), (ii) and (iv) contain no information for the fields

but simply describe parts of the torsion in the connection. Equations (iii) and (vii) determine the

remaining world-volume torsion components in terms of the fields. Equation (v) does not generate
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any new fields and thus becomes an algebraic identity for the next-to-leading term in the superfield

ma
b. Two, more manifest, algebraic identities are (vi) and (xi). From (ix) and (x) we get

hα
β′

= 1
6
(Γabc)α

β′

habc (.)

and

ma
b = δa

b − 2ka
b , (.)

where ka
b = hacdh

bcd. We note that putting Tαβ
c = −i(Γc)αβ implies that

h
(ij)
[αβ] = 0 , (.)

which is identical to the on-shell constraint imposed in the NR formalism of the previous sections.

In order to get the Dirac equation we take (xii):

K(αβ)
γ′

= i
2
(Γc)αβχc

γ′

(.)

and trace the three free spinor indices in different ways to extract the information. By applying

(Γd)
αβ and (Γd)γ′

β plus noting that

Kβ
γ′

= D̂hβ
γ′

− 1
2
(Γb

c′)β
γ′

Kb
c′ (.)

we get

χa
γ′

= − i
4
(Γa)αβ

Kαβ
γ′

(.)

and

i
(

χc
γ′

(Γcd)γ′α + χd
α

)

= 1
2
(Γb

a′Γd)α
β
Kβb

a′

− 1
6
(ΓabcΓd)α

β
D̂βhabc (.)

respectively. Now multiplying (.) by (Γd)δ′
α, in order to get rid of habc, gives

(Γc)δ′γ′χc
γ′

= i
2
(Γb

a′)δ′

β
Kβb

a′

, (.)

and if we use (.) in (.) we get

(Γd
a′)δ′

β
Kβd

a′

= 0 . (.)
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By comparing the two last equations we see that

(Γa)α′γ′χa
γ′

= 0 , (.)

which is the Dirac equation.

In order to get the scalar and tensor equations of motion we take (viii):

D̂βχa
γ′

+ Zaβ
γ′

= Kaβ
γ′

, (.)

where

Zaβ
γ′

:= Lβa
dχd

γ′

+ χa
β′

Kββ′

γhγ
γ′

. (.)

By using (.) in (.) we get

Dβχa
γ′

+ Zaβ
γ′

= (1
6
Γbcd

D̂ahbcd − 1
2
ΓbΓc′Kab

c′)β
γ′

. (.)

We now multiply (.) by (Γae′

)γ′
β and use the Dirac equation, which gives us the scalar equation

ηab
Kab

c′ = 1
4
(Γac′)γ′

βZaβ
γ′

. (.)

If we instead multiply (.) by (ΓaΓef )γ′
β (and again use the Dirac equation) we get the tensor

equation

D̂
c

habc = 1
8
(ΓcΓab)γ′

βZcβ
γ′

. (.)

These equations of motion are analogous to the ones derived in ref. [], and contain non-linearities

of the same kind.

6. Summary and conclusions

We have given a detailed account of the geometry involved in embeddings of supermanifolds into

supermanifolds. Special emphasis is put on the distinction between the different geometric objects

encountered, since confusing e.g. intrinsic and induced geometry obscures the understanding of

the formalism. Two preferred parametrisations of the embedding matrix in terms of matter fields,

equations (.) and (.) have been presented, aiming towards distinct formulations of the world-

volume field theory, each one emphasising different properties of the theory.
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The second of these, referred to as the “embedding formalism”, investigated by Howe, Sezgin

and West [], uses the torsion equation (.) together with the geometric “embedding condition”

Eα
a = 0 in order to derive equations of motion for the fields parametrising the embedding matrix

(.). The second formulation occurs in the theory of non-linear realisations applied to the second

supersymmetry (and the broken translations), as advocated by Bagger and Galperin []. By using

the second parametrisation (.) of the embedding matrix, that formalism is rederived.

We also described briefly the transformations involved in going from one parametrisation to

the other. Although it was straightforward to show that these transformations exist, we did not

examine them in detail. As commented on in section 2, the transformations, eq. (.), represent a

kind of local symmetry inherent in the definition of the embedding matrix, and it may be interesting

to pursue the investigation further in order to extract information from the field redefinitions. We

remind that the transformations involve not only the matter fields, but also the world-volume

geometry.

We see two valuable aspects of this exercise. On one hand, the equivalence of two seemingly

different starting points is established, and it becomes clear why they yield the same results (e.g.

Born–Infeld dynamics). On the second hand it casts some light on the embedding procedure in

explaining clearly why the obtained theory is one whose non-linearities stem from the (non-linearly

realised) symmetry under the target space supersymmetry generators broken by the embedding.

The two parametrisations have been applied to a concrete case, namely the 5-brane of 7-

dimensional supergravity. Here it was shown (in the first of the parametrisations) that the embed-

ding condition alone did not provide enough information to put the theory on-shell. An additional

irreducibility constraint, completely analogous to the one in the linear theory, had to be imposed.

While this “algebraic” consideration became transparent in the language of non-linear realisations,

the torsion components here become so complicated that we find the extraction of the field equa-

tions, though in principle possible, quite non-transparent. The second of the parametrisations, on

the other hand, is quite suited for finding the field equations (section 5). In this case we did not

need to impose any additional constraint after the world-volume torsion was chosen to be that

of conformal 6-dimensional supergravity. Since we could associate the irreducibility constraint of

our second formulation with the vanishing of a specific torsion component, we conjecture that the

choice of torsion in the second case was more than a conventional one, so that the irreducibility

constraint is hidden in the vanishing of the γabc part of the dimension-0 torsion component.

Acknowledgements: The authors are grateful to Paul Howe for commenting some of the calculations

in ref. []. The work of M.C. was sponsored by the Swedish Natural Science Research Council.
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Appendix A: Notation and conventions

Since a number of different geometric objects referring to different structures are encountered in

this paper, we try to summarise the notation in the following table∗ .

world-volume world-volume Target

Intrinsic Induced Extrinsic Normal space

Metric h g g′ g

Vielbein eA EA EA′ EA

Connection ωA
B ΩA

B ΩA′
B′

ΩA
B

Torsion T A TA TAB
C′

TA′

TA

Curvature RA
B RA

B KAB
C′

RA′
B′

RA
B

Exterior derivative d d d′ d

Canonical 1-form θ θ θ′ θ

Covariant derivative D ∇ ∇′ ∇

Appendix B: Spinors in 6 and 7 dimensions

The D = 7 Γ-matrices decompose as

(Γa)
αβ

=

(

(Γa)αβ 0
0 (Γ̄a)α′β′

)

(B.)

and

(Γa′

)
αβ

=

(

0 (Γa′

)αβ′

(Γa′

)α′β 0

)

(B.)

with respect to the tangential and normal directions and they satisfy

(Γa)αβ = (Γa)βα . (B.)

To raise and lower composite indices we use

C
αβ

= Cαβ =

(

0 1
−1 0

)

=

(

0 δαβ′

−δα′β 0

)

, (B.)

∗ Like the authors of ref. [7] we use the term “intrinsic” for the a priori defined world-volume entities, but
note that there is an unfortunate disagreement on terminology. Mathematical literature may use the term
for what we call “induced”.
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with the convention that
ψα = Cαβψ

β
,

ψ
β

= ψβC
βα

.
(B.)

The algebra is

{Γa,Γb} = 2ηab , (B.)

which implies that
{Γa, Γ̄b} :=ΓaΓ̄b + ΓbΓ̄a = −2ηabδα

β ,

{Γ̄a,Γb} :=Γ̄aΓb + Γ̄bΓa = −2ηabδα′

β′

,

{Γa′

,Γb′} :=Γa′

Γb′ + Γb′Γa′

= 2ηa′b′δα
β ,

{Γa′

,Γb} :=Γa′

Γb + ΓbΓa′

= 0 ,

(B.)

We split the 16 component indices according to

ψα → ψi
α ,

ψα′ → ψα
i ,

(B.)

where after the split α is a Spin(1,5) index and i is a SU(2) index. For the Γ-matrices this implies

(Γa)α
β =

(

0 −(Γa)α
β′

(Γ̄a)α′
β 0

)

→

(

0 −εij(γa)αβ

εij(γ̄
a)αβ 0

)

(B.)

and

(Γa′

)α
β =

(

(Γa′

)α
β 0

0 −(Γa′

)α′
β′

)

→

(

(γ7)α
βδi

j 0
0 −(γ7)α

βδi
j

)

, (B.)

where γa are the 6-dimensional gamma matrices []. They satisfy

(γa)αβ = − (γa)βα ,

(γa)αβ(γb)αβ = − 4δa
b

(B.)

and

(γa)αβ(γa)γδ = −2εαβγδ . (B.)

Indices are raised and lowered according to

ψi =εijψj ,

ψi =ψjεji

(B.)
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and
ψαβ =1

2
εαβγδψγδ ,

ψαβ =1
2
εαβγδψ

γδ .
(B.)

Notice that we can only raise and lower Spin(1,5) indices in pairs.

Appendix C: Some useful relations

In order to transform between vector and spinor indices we need the following relations, following

from the lorentzian property of the u matrices:

(Duα
γ)uγ

β = −1
4
(Γa

b
)α

β(Dua
c)uc

b ,

(Dua
c)uc

b = 2
n
(Γa

b)
β

α(Duα
γ)uγ

β ,
(C.)

where n is the dimension of the target space spinor representation. If we take into account the split

into tangential and normal indices we get

(Duα
γ)uγ

β = −1
4

(

(Γa
b)α

β(Dua
c)uc

b + (Γa′

b′)α
β(Dua′

c)uc
b′
)

,

(Duα
γ)uγ

β′

= −1
2
(Γa

b′)α
β′

(Dua
c)uc

b′ = −1
2
(Γa′

b)α
β′

(Dua′

c)uc
b ,

(Duα′

γ)uγ
β′

= −1
4

(

(Γa
b)α′

β′

(Dua
c)uc

b + (Γa′

b′)α′

β′

(Dua′

c)uc
b′

)

,

(C.)

and
(Dua

c)uc
b = 4

n
(Γa

b)β
α(Duα

γ)uγ
β = 4

n
(Γa

b)β′

α′

(Duα′

γ)uγ
β′

,

(Dua′

c)uc
b′ = 4

n
(Γa′

b′)β
α(Duα

γ)uγ
β = 4

n
(Γa′

b′)β′

α′

(Duα′

γ)uγ
β′

,

(Dua
c)uc

b′ = 4
n
(Γa

b′)β
α′

(Duα′

γ)uγ
β = 4

n
(Γa

b′)β′

α(Duα
γ)uγ

β′

.

(C.)
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Abstract

We consider brane solutions where the tensor degrees of freedom are excited. Ex-

plicit solutions to the full non-linear supergravity equations of motion are given for

the M and D branes, corresponding to finite selfdual tensor or Born–Infeld field

strengths. The solutions are BPS-saturated and half-supersymmetric. The resulting

metric space-times are analysed.
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1. Introduction

The way in which branes in M theory and string theory arise as “soliton” solutions of -

or -dimensional supergravity is well known, see e.g. [,]. Much less explored is the exact

relation between the dynamics of the brane degrees of freedom and the target space fields.

The former of course arise as zero-modes of the latter around a solitonic solution [,], but

when one goes beyond a linear approximation, no such relation has been established so far.

Part of the motivation of the present work is to fill this gap. Specifically, we address the

question of finding solutions to the supergravity equations of motion corresponding to finite

excitations of the tensorial degrees of freedom, while keeping the brane flat and infinite.

The analysis is applied to the M brane of -dimensional supergravity and the D brane

of type IIB supergravity, which both are truly solitonic. There are a priori strong reasons

to believe that analytic solutions exist, since they are related to the dynamics of Born–

Infeld vector fields and selfdual tensors on the world-volumes of the D and M branes,

respectively. This calculation is carried through in section . Section  examines the metric

properties of the resulting space-time, especially a limiting case for maximal field strength,

where no asymptotic Minkowski region exists. In section , we show that the solutions are

half-supersymmetric and construct the corresponding Killing spinors.

2. Finite tensor deformations

We want to find exact solutions for the M and D branes, where we have finite field strength

deformations. What makes it possible to find exact solutions are the nice algebraic properties

of the selfdual field strengths we are dealing with. For most of our conventions and notation

we refer to ref. []. Here we just state our notation for the different types of indices occurring:

Space-time indices: M,N, . . . (coordinate-frame), A,B, . . . (inertial);

Longitudinal indices: µ, ν, . . . (coordinate-frame), i, j, . . . (inertial);

Transverse indices: p, q, . . . (coordinate-frame), p′, q′, . . . (inertial).

2.1. The M5 brane

The -form field strength H should be parametrised by a closed -form F (x) lying in the

longitudinal directions, according to experience from brane dynamics [,]. This can also be

understood from the general Goldstone analysis []. In contrast to the (infinitesimal) Gold-

stone analysis, where F fulfilled a linear selfduality relation, F should in the exact analysis

fulfill some non-linear selfduality relation. We are going to treat the simplest case where F

is constant. Consider the equation of motion for H , d⋆H − 1
2H∧H = 0 []. The ⋆ operation

involves the dualisation with the metric restricted to the -dimensional longitudinal direc-

tions. In the Goldstone analysis [], where we considered an infinitesimal excitation of F ,
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this metric was proportional to 11 and we did not have to care much about whether we had

the radius-independent tensor in coordinate-frame or inertial indices, they just differed by

a scalar function of the radial coordinate. Now, the dualisation in coordinate-frame indices

involves a metric that will be “non-trivial”, and for the selfduality to be consistent with

radius-independence it must be possible to formulate it in terms of an inertial tensor.

Take hijk to be a (linearly) anti-selfdual inertial tensor. Define qij = 1
2hi

klhjkl. Then,

tr q = 0 and q2 = µ11, where µ = 1
6 tr q2. The tensor (qh)ijk ≡ qi

lhljk is automatically

antisymmetric and selfdual. For later purposes, we define ν = 1
2

√
µ. The most general

Ansatz for the deformed -form is now

Hµνλp = eµ
ieν

jeλ
k∂p∆Fijk ,

Fijk = fhijk + g(qh)ijk ,
(.)

where f and g are functions of µ and of the radial coordinate ρ. Due to the algebraic

properties of h all higher order terms can be reduced to the two terms in the Ansatz. The

necessity to include the second term is that the radial derivative on ⋆H acts not only on

the tensor but also on the vielbeins. The field along the -sphere will not change, since the

magnetic charge should not be altered, so the background solution [] remains unaltered

Hpqrs = δtuεpqrst∂u∆ , (.)

where ∆ is a harmonic function of the transverse coordinates, i.e., δpq∂p∂q∆ = 0. By con-

sidering all functions, as f and g above, as functions of ∆ instead of ρ, one covers AdS space

(∆ = (R
ρ )3) as well as the asymptotically flat brane solutions (∆ = 1 + (R

ρ )3), without any

extra calculational complication.

As an Ansatz for the vielbeins, we take

eµ
i = δµ

j(aδj
i + bqj

i) ,

ep
p′

= cδp
p′

,
(.)

where a, b and c are functions of µ and ∆. One thing that makes the calculations simpler is

that all matrices that may occur, vielbeins and derivatives of vielbeins, commute with each

other. One may quite easily calculate the Ricci tensor. A first observation is that the RHS

of Einstein’s equations can never contain ∂p∂q∆, so such terms must not be present in Rpq.

This implies that c = (det eµ
i)−1/d̃, where d̃ = D − d − 2 ⋆. When this is used, the Ricci

⋆ D is the target space dimension and d that of the brane. Thus, in this case d̃=3.
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tensor is, expressed in terms of A ≡ log e (e denoting eµ
i),

Rpq = −∂p∆∂q∆
(

tr(A′2) + 1
d̃
(trA′)2

)

+ 1
d̃
δpq(∂∆)2trA′′ ,

Rµν = −c−2(∂∆)2eµ
ieν

jA′′

ij .
(.)

Prime denotes differentiation w.r.t. ∆ and (∂∆)2 ≡ δpq∂p∆∂q∆. The matrix A will be

parametrised as A = 1
d (α11 +βq), and α is actually equal to log det eµ

i. It is also convenient

to rescale the functions in the Ansatz for H as φ = e−αf , ψ = e−αg. The remaining part of

Einstein’s equations, together with the e.o.m. for H , are now

0 = α′′ − e2α(1 − 2µφψ) ,

0 = β′′ + 3e2α(φ2 + µψ2) ,

0 = α′2 + 1
3µβ

′2 − e2α(1 − 4µφψ) ,

0 = φ′ + (eα + 1
2α

′)φ− 1
2µβ

′ψ ,

0 = ψ′ − (eα − 1
2α

′)ψ − 1
2β

′φ .

(.)

This is one equation too many, but by differentiating the third equation one gets a combina-

tion of the other four (eventually, one has to check that the integration constant vanishes).

The µ-dependence can be removed by redefining µ1/4φ → φ, µ3/4ψ → ψ, µ1/2β → β; the

equations become identical to the ones above with µ = 1.

The background solution, describing either AdS7 × S4 or an M brane with no tensor

excitations, is α = − log∆ and the rest zero. If one builds up the solution order by order

in the perturbation, one first solves the zero-mode equation for φ giving φ = k∆−1/2. This

linearised solution then backreacts on the geometry giving the lowest order perturbation

to β ∼ ∆−1. This non-diagonal metric then forces the tensor to contain the other duality

component, ψ ∼ ∆−3/2, which in turn enforces a diagonal modification to the vielbein, i.e.

of α, of the order ∆−2. And so it goes on. This becomes an expansion in negative powers of

∆ and at the same time in the constant k, which just determines the normalisation of hijk.

The µ-dependence is reinserted by choosing µ−1/4k = 1 (so that φ starts out with ∆−1/2),

which makes the expansion look like

α ∼ − log ∆ + µ∆−2 + µ2∆−4 + . . .

β ∼ ∆−1 + µ∆−3 + µ2∆−5 + . . .

φ ∼ ∆−1/2 + µ∆−5/2 + µ2∆−9/2 + . . .

ψ ∼ ∆−3/2 + µ∆−7/2 + µ2∆−11/2 + . . .

(.)



Cederwall, Gran, Holm, Nilsson: “Finite Tensor Deformations. . .” . . . . . . . . . . . . . . . . . . . . . . 

Considering the first few terms in this expansion enabled us to find the exact solution:

α = −1

2
log(∆2 − ν2) ,

β =
3

4ν
log

∆ − ν

∆ + ν
,

φ =
1

2

( 1√
∆ + ν

+
1√

∆ − ν

)

,

ψ =
1

4ν

( 1√
∆ + ν

− 1√
∆ − ν

)

.

(.)

Before inserting the explicit solution for α and β in the metric, it is useful to note

that the eigenvalues of the matrix q are ±2ν, and that there are three of each. We group

the longitudinal coordinates accordingly into x±. The time direction is included in x−. The

metric then becomes

ds2 = (∆2 − ν2)−1/6

[

(

∆ + ν

∆ − ν

)1/2

dx2
− +

(

∆ − ν

∆ + ν

)1/2

dx2
+

]

+ (∆2 − ν2)1/3dy2 . (.)

It clearly reduces to the well known M brane metric when the tensor deformation is absent,

i.e., when ν = 0. We will return to the properties of the metric in section . Finally, inserting

the solution into the Ansatz (.) gives us the -form in inertial indices:

Hijkp′ =
δp′

p∂p∆

(∆2 − ν2)2/3

[

1√
∆ + ν

Π+h+
1√

∆ − ν
Π−h

]

ijk

, (.)

where Π± = 1
2 (11± q

2ν ) project all indices on the + and − directions (the algebraic properties

of h tell us that only hi+j+k+
and hi−j−k−

are non-vanishing).

2.2. The D3 brane

The relevant tensor field in type IIB supergravity [] is the complex -form field strength

H . The D brane is invariant under SL(2;Z) transformations, and it is convenient to keep

SL(2;Z) covariance throughout the calculations. The Bianchi identity and equation of motion

for H are
DH − P∧H̄ = 0 ,

D⋆H − P ∧⋆H̄ + iG∧H = 0 ,
(.)

where the U(1) covariant derivative D contains a connection Q, which together with P are

the left-invariant SL(2;R) Maurer–Cartan forms built from the scalars ⋆.

⋆ We will leave Q out of the continued discussion—to the initiated reader it will be obvious that it is

pure gauge, and we use this to put it to zero.
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We use an Ansatz analogous to the M brane case:

H = d∆∧F̃ , (.)

where

F̃ij = fFij + gF̄ij . (.)

We again have one anti-selfdual (⋆F = −iF ) and one selfdual (⋆F̄ = iF̄ ) part. The algebraic

properties of the matrix F are

(FF )ij = µδij ; µ = 1
4 trF 2 ,

(FF̄ )ij = (FF̄ )ji ,

tr(FF̄ ) = 0 .

(.)

When we excite H we must also excite the -form P , as a consequence of the equations

of motion, and we need an Ansatz for that too,

P = ud∆ , (.)

where u = u(µ, µ̄,∆). The Bianchi identity and equation of motion for P are

DP = 0 ,

D⋆P −H∧⋆H = 0 .
(.)

The Ansätze trivially fulfill the Bianchi identity parts of (.) and (.) when only func-

tions of the radial coordinate are considered.

The Ansatz for the vielbeins are

eµ
i = δµ

j(aδj
i + b(FF̄ )j

i) ,

ep
p′

= cδp
p′

,
(.)

which is also completely analogous to the M brane case, i.e., eµ
i is made up of the two

symmetric matrices we can construct.

The Ricci tensor is given by eq. (.), where A is now parametrised as A = 1
d(α11+βF F̄ ).

The equations of motion we want to solve are Einstein’s equation

RMN = 2P̄(MPN) + H̄(M
RSHN)RS − 1

12gMN H̄RSTH
RST

+ 1
96G(M

RSTUGN)RSTU ,
(.)
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together with the the equations of motion in (.) and (.). We use the background

solution []
G = ± 1

5!(δ
mn∂m∆εnpqrstdy

p∧dyq∧dyr∧dys∧dyt

− 5g−2∂m∆εµνρσdy
m∧dxµ∧dxν∧dxρ∧dxσ) ,

(.)

where g = det(gMN ) (the first term, which gives the D brane charge, is identical to the

one in the ordinary D brane solution, and the second is its dual, where we have taken into

account that the metric is modified). With the same rescalings as for the M brane, i.e.,

f = eαφ, g = eαψ and u = eαχ, we can rewrite the equations of motion as

0 = α′′ − e2α
(

1 + 4(µφψ̄ + µ̄φ̄ψ)
)

,

0 = β′′ − 8e2α(φφ̄ + ψψ̄) ,

0 = α′2 + 1
2µµ̄β

′2 − e2α
(

1 + 8(µφψ̄ + µ̄φ̄ψ) − 4χχ̄
)

,

0 = φ′ + (eα + 1
2α

′)φ− 1
2 µ̄β

′ψ + eαχψ̄ ,

0 = ψ′ − (eα − 1
2α

′)ψ − 1
2µβ

′φ+ eαχφ̄ ,

0 = χ′ + α′χ+ 2eα(µφ2 + µ̄ψ2) .

(.)

By differentiating the third equation we get a combination of the other five. The first three

equations come from Einstein’s equation, the fourth and fifth from the equation for H and

the last one from the equation for P . From the properties of the fields involved under U(1)

gauge transformations it is clear that α, β and φ are real functions, while ψ and χ must be

real functions multiplied by µ. The solution to the equations is given by

α = −1

2
log(∆2 − ν2) ,

β = −2

ν
log

∆ − ν

∆ + ν
,

φ =
1

2

( 1√
∆ + ν

+
1√

∆ − ν

)

,

ψ = −µ
ν

( 1√
∆ + ν

− 1√
∆ − ν

)

,

χ =
µ

√

∆2 − ν2 ,

(.)

where ν = 2|µ| and we have used the normalisation that φ → ∆−1/2 as µ → 0 (the same

rescaling argument holds here as for the M brane).

The metric may be diagonalised in the same manner as the M brane metric (the

eigenvalues of FF̄ are ± ν
2 , and now time is in the positive eigenvalue sector), giving

ds2 = (∆2 − ν2)−1/4

[

(

∆ + ν

∆ − ν

)1/2

dx2
+ +

(

∆ − ν

∆ + ν

)1/2

dx2
−

]

+ (∆2 − ν2)1/4dy2 . (.)
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Inserting the solution into the Ansätze (.) and (.) finally gives us

Hp′ij =
δp′

p∂p∆

2(∆2 − ν2)5/8

[

1√
∆ + ν

(F − 2µ

ν
F̄ ) +

1√
∆ − ν

(F +
2µ

ν
F̄ )

]

ij

,

Pp′ =
µδp′

p∂p∆

(∆2 − ν2)9/8

(.)

in inertial indices.

We want to stress that the structures of the solutions for the D and M branes are

completely analogous (except that we happen to excite additional scalar fields in the D

brane case, which however is easily dealt with). The linear terms in the deformations, i.e.,

the lowest order terms in the series expansions of φ, agree with the zero-modes derived in

ref. [].

3. Properties of the metrics

The metric space-times described by eqns. (.) and (.) represent deformations of the

original AdS×sphere or brane space-times parametrised by one real number ν, measuring

the square of the field strength. When the radial coordinate ρ runs from 0 (which is the

horizon in the brane case and a subset of no special significance in the AdS case) to ∞, ∆

runs from ∞ to 1 for the brane and from ∞ to zero for AdS. We see that there is potential

danger when ∆ − ν becomes negative.

Let us first treat the AdS case. Here ∆ − ν = (R
ρ )d̃ − ν, and this is bound to change

sign at some finite radius when ν > 0. The question is whether this is a physical singularity

or not. It is straightforward to calculate e.g. the curvature scalar, and find that it diverges

at this radius. Such solutions do not define sensible space-times.

For the brane solutions, ∆ − ν = (R
ρ )d̃ + 1 − ν. The solution makes sense for ν ≤ 1.

This is a reflection of the Born–Infeld or Born–Infeld-like dynamics, which breaks down at

field strengths where det(g + F ) vanishes. The behaviour of the solutions for small radii is

always unmodified, i.e., AdSd+1 × Sd̃+1. For large radii, there is an asymptotic Minkowski

region as long as ν is strictly smaller than 1.

The limiting case, ν = 1, has some interesting properties. One may calculate the curva-

ture scalar, and find that it is non-singular as ρ → ∞; it goes asymptotically as ρ−1. After

some trivial rescalings, the leading terms in the metric behave as

M: ds2 = ρ2dx2
− + ρ−1(dx2

+ + dy2) ,

D: ds2 = ρ3dx2
+ + ρ−1(dx2

− + dy2) .
(.)



Cederwall, Gran, Holm, Nilsson: “Finite Tensor Deformations. . .” . . . . . . . . . . . . . . . . . . . . . . 

As ρ→ ∞, half of the longitudinal directions “expand” and the other half “shrink”, and what

remains is something rather like a continuously smeared membrane or string, respectively.

Whether this interpretation is physically relevant is unclear to us, however it is supported

by the asymptotic behaviour of the dual of the tensor field, which asymptotically lies in the

shrinking directions and the (d̃+1)-sphere. The limiting metric does not factorise, but it has

some things in common with the AdS metric: the space-like distance to ρ = ∞ is infinite,

but light rays may reach infinity (and come back) in finite time.

4. Supersymmetric properties of the solutions

In the absence of an expectation value for the field strength on the brane, it is well known

that the solutions break half the supersymmetry, i.e., that there are  Killing spinors.

Arguing näıvely in terms of the field theory on the brane, one might expect that giving a

background value to F would break the entire remaining global supersymmetry, so that the

solutions presented here would be non-supersymmetric (and perhaps less interesting). What

actually happens is instead that there are new combinations of the broken and unbroken

supersymmetries that become Killing spinors in the presence of F 6= 0, and that the new

solutions enjoy the same amount of supersymmetry,  Killing spinors.

There are at least two good arguments why this should happen. The first, more con-

ceptual, is that the tensor modes are very much on the same footing as the scalar ones, in

the sense that they all result from breaking of large gauge transformations []. Deforming a

brane by giving constant “field strength” to scalars (transverse coordinates) corresponds to

tilting the brane through some angle, a somewhat trivial operation that of course does not

change the number of supersymmetries. The definition of world-volume chirality however

changes, and one has to recombine broken and unbroken supersymmetries to recover the

new Killing spinors. A similar phenomenon should occur for the tensors, and we already

know that an analogous mechanism is at work for the tensors themselves, where chirality

(selfduality) becomes nonlinear. The second, more technical, argument is that one knows

from work on κ-symmetry in supersymmetric brane dynamics [,,,] that there is a half-

rank projection matrix, or generalised chirality operator [], acting on spinors separating

broken and unbroken supersymmetry, and that this matrix generically depends on F . For

constant F , this means that there should be  global supersymmetries.

When the tensor degrees of freedom are turned on, the branes carry not only magnetic

charge, but also local electric charge [,]. The BPS property expressed through the exis-

tence of a local projection on the Killing spinors involves both charges, which explains why

the excited brane may be BPS-saturated although the tensor excitations carry energy. The

configurations carrying global electric charge are world-volume solitons [].

The most convincing argument is of course to construct the Killing spinors explicitly,
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which we now proceed to do (although we satisfy ourselves with the M brane case). The

preserved supersymmetry obeys the Killing spinor equation obtained by setting the variation

of the gravitino field in the background to zero:

δζψM = DMζ − 1
288 (ΓM

NPQR − 8δM
NΓPQR)ζHNPQR = 0 . (.)

The inertial gamma matrices are split as ΓA = (γi, γ7 ⊕ Σp′) The calculation is straightfor-

ward (along the lines of ref. []). After assuming that the only functional dependence comes

through ∆, one obtains a differential equation for ζ,

ζ′ +
[

1
3∆(∆2 − ν2)−1 + 1

4 (∆2 − ν2)−1/2γ7

]

ζ = 0 , (.)

and an algebraic condition

1
2 (11 + Γ)ζ = 0 ; Γ = ∆−1(∆2 − ν2)1/2

(

γ7 + 1
12 (∆2 − ν2)1/2Fijkγ

ijk
)

. (.)

It is now crucial that the last equation projects ζ on half the original number of components.

Using the explicit forms of the functions entering into F gives Γ2 = 11, so that eq. (.) is a

projection. It defines a generalised chirality condition, which for any fixed radius takes the

form known from the κ-symmetric formulation of the M brane []. The chirality condition

varies continuously with the radial coordinate, as does the non-linear selfduality condition

on F .

The solution to eq. (.) is

ζ− = (∆2 − ν2)1/12

(

1√
∆ + ν

+
1√

∆ − ν

)1/2

λ− ,

ζ+ = (∆2 − ν2)−5/12

(

1√
∆ + ν

+
1√

∆ − ν

)−1/2

λ+ ,

(.)

where ζ has been split in chirality components according to the eigenvalue of γ7 and where

λ± do not depend on ∆. We notice that in the absence of a tensor field we recover the Killing

spinors of ref. [] which was ζ = ∆−1/12λ−. It remains to be checked that the solutions (.)

are consistent with the chirality (.), i.e., that the ∆-dependence cancels upon inserting

the solutions into the chirality condition. This indeed happens, and the chirality condition

condenses into

λ+ = − 1
12hijkγ

ijkλ− , (.)

which together with eq. (.) gives the explicit form of the Killing spinors.
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5. Discussion

We have derived a new class of half-supersymmetric solutions of -dimensional and type IIB

supergravity, corresponding to M and D branes with non-vanishing constant field strength.

The structure of the solutions clearly reflects the property of Born–Infeld-like dynamics as

opposed to quadratic actions, in that there is a maximal allowed value of the field strength.

It is interesting to note that although the symmetry of the solutions is smaller than in

the case of vanishing field strength—the longitudinal SO(1,5) part of the isometry group is

broken into SO(1,2)×SO(3) for the M brane (and accordingly for the D brane), the amount

of supersymmetry is unchanged (the longitudinal translations of course remain unbroken).

The split of the longitudinal directions in two groups is a novel property of brane solutions.

It is not related to the longitudinal symmetry breaking induced by world-volume solitons,

rather this split seems to have something to do with other branes, in these cases membranes

and strings. The phenomenon might deserve further study, especially in the strong field

limit. The formalism of ref. [] may be useful in this context.

It should be possible to push the analysis further by considering also configurations with

field strengths that depend on the longitudinal coordinates and thus derive the dynamics of

the fields (the result would be in the selfdual form of refs. [,]). Another application would

be the generalisation to other types of branes—the method presented here might provide

a manifestly SL(2;Z)-covariant formulation of the type IIB -branes. Finally, it would be

interesting to understand whether the limiting solutions of maximal field strength have

some physical significance, considering their interesting asymptotic structure.
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Abstract

We will show that gauge theory can be described by an almost prod-
uct structure, which is a certain type of endomorphism of the tangent
bundle. We will recover the gauge field strength as the Nijenhuis tensor
of this endomorphism. We discuss a generalization to the case of a gen-
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1 Introduction

In this paper we will look at brane theory, gauge and Kaluza–Klein theory from
a new perspective. The basic idea is that instead of looking at embedded branes
or gauge theory over a base manifold, we will treat the total space directly. As
is well known, this is how Kaluza–Klein theory works. There, the total manifold
is constrained to have one part with a certain isometry group, that becomes the
gauge group upon compactification.

Here we will generalize this analysis, in a completely global treatment, and
show that Kaluza–Klein theory or normal gauge theory are nothing but special
cases of almost product manifolds. The characterization of Kaluza–Klein theory
will be that we have one foliation which is geodisable (i.e., the almost product
structure becomes a sort of Ehresmann connection), which serves as the fiber,
and one perhaps non-integrable distribution. These split the tangent bundle
of the total space into two different parts, in fiber bundle language called the
vertical and horizontal respectively. The base space of a principal bundle is
recovered as the leaf space of the foliation, and the field strength as the Nijenhuis
tensor of the almost product structure. From this case of a geodisable foliation
we will also find that imposing integrability on the normal distribution, the
vanishing of the Nijenhuis tensor gives us two new coboundary operators under
which the entire graded algebra of differential forms will become doubly graded.
This gives us directly a topological splitting of the manifold into two parts, see
also [5], why the cohomology groups split under these two coboundary operators.

In brane theory we discuss how the solutions in fact may be regarded as
foliations of the total space rather than as embedded objects. In the case of
e.g. the M5-branes we know that the solutions are non-singular [11, 10] but
even in the cases where the solutions are singular it is clear that although the
objects may be introduced as sources by Dirac delta functions, consistency of
the theory in the total space demands that we cut out these points or sections of
the manifold. This again brings us back to foliated space solutions. In M-brane
theory we will see that the discussed solutions are indeed doubly foliated—the
Nijenhuis tensor of the almost product structure, which will characterize the
solution, vanishes. In the case of brane solutions, though, we are also interested
in the metric and we will thus put the metric solution into the classification
regime of almost product manifolds. We will also see that the solutions are
characterized by certain basic forms, the anti-symmetric tensor fields, which
can be seen to be compatible with the almost product structure characterized
by the brane solution or equivalently as defining this almost product structure.
In this new formalism we are also able to argue for the existence of new solutions
to M-theory in which we only require the brane to be integrable and the foliation
needs not even be Ehresmann. In these cases, ref. [9] argues that in situations
like this, when the foliation does not define a fibration of the manifold, we could
very well be up to a leaf space that is non-commutative.

The paper is divided into five section, of which you are now reading the
first. When studying endomorphisms of the tangent bundle, which is the base
for these almost product structures that will be dealt with, we find a certain
dual structure on the set of differential forms and the set of multivectors on a
manifold. In section two we will describe this dual picture and show how the
set of derivations on differential forms and multivectors are recovered in a very
easy and similar way. These relations will then be of utmost interest for us as
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we turn to the case of endomorphisms on the tangent bundle later in section
four. But first we will review the basic concepts of distributions and foliations
on a manifold expressed in a global way. This occurs in section three where we
also get acquainted with the concept of basic and semi-basic forms. These are
the keys of putting the anti-symmetric tensor fields into the context of foliations
and therefore the brane solutions. We will also see that the set of basic forms
are closed under the exterior derivative and we thus get the cohomology groups
of the leafspace. This treatment in the first subsection of section three will be
done completely without the presence of a metric. In the following subsection,
though, we will see what additional structure the presence of a metric will give
us in terms of distributions and foliations. Here we introduce the deformation
tensor and look at the interpretation of its irreducible parts.

Section four is the core of the paper. Here we start in the first subsection
to introduce endomorphisms on the tangent bundle in a general framework.
We introduce the I-bracket associated with an endomorphism and the Nijenhuis
tensor, measuring how far this endomorphism is from being a Lie algebra homo-
morphism on the infinite-dimensional Lie algebra of vector fields on a manifold.
We will also treat the case where a metric is present, in which we introduce
the Jordan bracket associated with an endomorphism and the Jordan tensor,
measuring how much the Jordan bracket fails to commute with the endomor-
phism. Finally, we introduce a generalized deformation tensor, which later will
reduce to the deformation tensor introduced in section three. In subsection
two we will start to see how certain endomorphisms, namely almost product
structures, will serve as characterizing possible foliations on a manifold. We
will here recover the tensors from section three, where we see that the Nijenhuis
tensor measures non-integrability and the Jordan tensor measures how far the
two complementary distributions, defined by the almost product structure, are
from being geodesic. We will introduce two new connections which both com-
mute with the almost product structure and which will be of certain interest
in the classification scheme in following subsection. In the last subsection, we
present the classification and examine certain important consequences of some
of its special cases. We will see the splitting of the cohomology groups in the
case where the almost product structure defines two Ehresmann foliations, we
will see how the holonomy groups split when the almost product structure is
covariantly constant, we will see how the brane solutions fit into this classifica-
tion scheme and we will see that the Nijenhuis tensor indeed measures the field
strength in gauge theories and Kaluza–Klein theories. We will also present the
local structures of the involved objects in some selected cases.

In section five we will end by discussing how this new formalism can help
us in understanding M-theory, and how one could proceed in studying these
objects further.

2 Derivations on the exterior algebra of forms
and vectors

In this section we will take a look at the set of all derivations on both the set
of differential forms and the set of multivectors on a manifold. We will find two
different types of brackets, namely the Schouten–Nijenhuis bracket, which is a
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bracket between multivectors, and the Frölicher–Nijenhuis bracket, which is a
bracket between vector-valued forms. The Schouten–Nijenhuis bracket will by
the adjoint mapping become a derivation on the set of multivectors, while the
Frölicher–Nijenhuis bracket turns up in the commutator of two derivations on
the set of differential forms. See [19, 20] for a more detailed study. The new
thing here is that we will put the action on forms and multivectors on an equal
footing. We will see that all maps have its dual in the co-picture. But let us
start with some preliminaries.

Definition 2.1

Let M be a manifold and let us denote

Ωp :=Ωp(M ) the p-forms on M

Ω :=⊕
p

Ωp the graded algebra of p-forms

Λq :=Lq(M ) the q-vectors on M

Λ :=⊕
q

Λq the graded algebra of q-vectors

We will now study maps on Ω and Λ, especially those maps that are derivations.
So we need some basic definitions.

Definition 2.2

Let D ∈ Lin(Ω, Ω), (D ∈ Lin(Λ, Λ)) be a linear map on the graded algebra of
pforms (q-vectors). Then D is said to be graded of degree k if

D : Ωp 7−→ Ωp+k, (Λp 7−→ Λp+k).

Let Di ∈ Lin(Ω, Ω), (Di ∈ Lin(Λ, Λ)) be graded linear maps of degree ki, then
we can define the graded commutator by

[D1, D2] := D1 ◦D2 − (−1)k1k2D2 ◦D1,

which is again a graded linear map but of degree k1 + k2. We can also define
the graded Jacobi bracket by

[D1, D2, D3] :=[[D1, D2], D3] + (−1)k1(k2+k3)[[D2, D3], D1] +

+ (−1)k3(k1+k2)[[D3, D1], D2]

A graded linear map is said to be a graded derivation of degree k if

D(ω1 ∧ ω2) = Dω1 ∧ ω2 + (−1)klω1 ∧Dω2, for ω1 ∈ Ωl, (Λl), ω2 ∈ Ω, (Λ).

We will denote the space of all derivations of degree k by DerkΩ, (DerkΛ) and
the space of all derivations by

Der Ω := ⊕
k
DerkΩ, (Der Λ := ⊕

k
DerkΛ).

Now it is easily seen that the set of all derivations on Ω and Λ respectively,
forms a graded Lie algebra under the graded commutator.
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Proposition 2.3

Der Ω (Der Λ) becomes a graded Lie algebra with the graded commutator de-
fined in 2.2. This means that it satisfies the graded Jacobi identity, i.e.,

[D1, D2, D3] = 0, ∀Di ∈ Der Ω, (∀Di ∈ DerΛ).

proof: By direct calculation. �

We will study these sets of derivations in the next two subsections. We will
see that we can introduce a map called the generalized Lie derivative which is
not necessarily a derivation but has some nice characteristics. Among these are
the natural fact that it reduces to the usual Lie derivative in the case it acts
by a vector, and the fact that it has a dual map. All this will become clear in
subsection 2.

2.1 Derivations on Λ

Here we will see how we can obtain the Schouten–Nijenhuis bracket of two
multivectors from the generalized Lie derivative to be introduced. We will start
by introducing a formal boundary operator on the set of multivectors on M

denoted by Λ.

Definition 2.4

Let Λ be the graded algebra of all p-vectors on M . Then we can formally form
a differential complex over the vector fields with the sequence

0
∂

←−−−− Λ1 ∂
←−−−− Λ2 · · ·

∂
←−−−− Λq ∂

←−−−− · · ·

where ∂ is a “boundary” operator with the characteristics

∂ : Λ 7−→ Λ, Λq 7−→ Λq−1, ∂ ◦ ∂ = 0.

It is defined on a p-vector by

∂(X1 ∧ . . . ∧Xp) :=
∑

i<j

(−1)i+j+1[Xi, Xj] ∧X1 ∧
i√
. . .

j√
. . . ∧Xp,

where
i√
. . .

j√
. . . means that Xi and Xj are omitted, and satisfies ∂Λ1 = 0. The

nilpotency follows from the Jacobi identity of the vector bracket.

Remark 2.5

It should be pointed out that ∂ defined above is no derivation. It is not defined
on functions and not even well defined on general p-vectors.

We refer to the definition of ∂ as formal because of what we learned from remark
2.5. We can see why it is not well defined on p-vectors by taking the 2-vector
example. Let X1 ∧ X2 ∈ Λ2 be a 2-vector on M , then we know that as a 2-
vector X1 ∧ X2 = fX1 ∧ f−1X2, where f is an arbitrary function on M . But
∂(X1∧X2) = [X1, X2] 6= ∂(fX1∧f−1X2) = [X1, X2]+f−1X1[f ]X2−fX2[f

−1]X1,
so we see that it is not well defined. It should be noted however that it is well
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defined on the set of multivectors on a Lie algebra where the functions instead
becomes pure numbers. Nevertheless we will see that the formal boundary
operator is of importance.

We also need to introduce the exterior product between multivectors.

Definition 2.6

Let Λ be the graded algebra of all p-vectors on M , let X ∈ Λ1 be a vector, then
the exterior product with respect to X have the following characteristics:

εX : Λ 7−→ Λ, Λq 7−→ Λq+1, εX ◦ εX = 0.

The exterior product is defined by its action on a p-vector by

εX(X1 ∧ . . . ∧Xp) := X ∧X1 ∧ . . . ∧Xp.

Let Y ∈ Λ1 be another vector, then

[εX , εY ] = 0

i.e., εXεY = −εY εX . Now let Xi ∈ Λ1 be p vectors and let us extend the
exterior product in the sense

εX1∧...∧Xp
:= εX1

◦ . . . ◦ εXp
.

This makes the exterior product a p-graded map, i.e.,

εX1∧...∧Xp
: Λ 7−→ Λ, Λq 7−→ Λq+p.

Remark 2.7

It should be noted that the map εX , although a linear map, is no derivation.

We can now create the generalized Lie derivative by taking the commutator of
these two maps on Λ.

Definition 2.8

Let X ∈ Λ be a p-vector on M . We can then define the generalized Lie deriva-

tive, ĽX , with following characteristics:

ĽX : Λ 7−→ Λ, Λq 7−→ Λq+p−1.

It is defined simply through the boundary operator and the exterior product by

ĽX := [∂, εX ].

Remark 2.9

The generalized Lie derivative, ĽX is only a derivation in the case when X ∈ Λ1

is a vector. In this case it is of course the usual Lie derivative.
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So to sum up we have three maps on Λ, the boundary operator ∂, the exte-
rior product εX and the generalized Lie derivative ĽX , of whom neither is a
derivation except for the case when X is a pure vector when the generalized
Lie derivative reduces to the ordinary Lie derivative. Now, however, if we take
the commutator of two generalized Lie derivatives we recover the Schouten–
Nijenhuis bracket which as the adjoint mapping is a derivation on Λ.

Definition 2.10

Let X ∈ Λp, Y ∈ Λq be two multivectors on M and let ω ∈ Ωp+q−1 a closed
(p + q − 1)-form, then we can define the Schouten–Nijenhuis bracket with
following characteristics:

[X, Y ] : Λ× Λ 7−→ Λ, Λp × Λq 7−→ Λp+q−1,

or in the sense of adjoint mapping

adX : Λ 7−→ Λ, Λq 7−→ Λq+p−1

adXY := [X, Y ].

The following definitions of the Schouten–Nijenhuis bracket are equivalent

(i) Ľ[X,Y ] := [ĽX , ĽY ]

(ii) (−1)p−1[X, Y ] := ∂(X ∧ Y )− ∂X ∧ Y − (−1)pX ∧ ∂Y

(iii) [X, Y ] :=
∑

i,j

(−1)i+j [Xi, Yj ] ∧X1 ∧
i√
. . . ∧Xp ∧ Y1 ∧

j√
. . . ∧ Yq

Proposition 2.11

The Schouten–Nijenhuis bracket as a map adX : Λ 7→ Λ is a derivation on Λ
and satisfies the graded Jacobi identity. It forms thus a Lie algebra structure
on Der Λ.

We will see in next subsection, where we look at derivations on the set of differ-
ential forms Ω on M , that the boundary operator will become a kind of dual to
the exterior derivative or co-boundary operator on Ω, the exterior product will
be dual to the interior product and the generalized Lie derivative will become
dual to a generalized Lie derivative on differential forms.

2.2 The dual maps on Λ and Ω

We will here define the exterior derivative, the interior product and the gener-
alized Lie derivatives as dual maps to those defined in the previous subsection.

Definition 2.12

Let Ω be the graded algebra of all p-forms on M and let us form the differential
complex over Ω with sequence

0
i∗−−−−→ Ω0 d

−−−−→ Ω1 d
−−−−→ · · ·Ωp d

−−−−→ · · ·

6



where i∗ is an inclusion, and d is the coboundary operator on Ω with following
characteristics:

d : Ω 7−→ Ω, Ωp 7−→ Ωp+1, d ◦ d = 0.

Let Xi ∈ Λ1 be vector fields on M then we can define the coboundary operator
by

dω(X1, . . . , Xp+1) :=
∑

i

(−1)i+1
LXi

ω(X1,
i√
. . . , Xp+1)−

−ω(∂(X1 ∧ . . . ∧Xp+1))

.

The nilpotency is not manifest but follows by the relation [LXi
, LXj

] = L[Xi,Xj ].
We see that the coboundary operator in some sense is the adjoint operator of
∂.

We see that although the boundary operator defined in 2.4 was not well defined,
the total expression for the exterior derivative is. The exterior derivative is of
course a derivation, hence its name. Now to the interior product.

Definition 2.13

Let Ω be the graded algebra of p-forms on M , X ∈ Λ1 be a vector field and
let εX be the exterior product defined in 2.6. Then we can define the interior
product with the following characteristics:

iX : Ω 7−→ Ω, Ωp 7−→ Ωp−1, iX ◦ iX = 0,

as the adjoint of the exterior product, i.e.,

iXω(X1, . . . , Xp−1) = ω(εX(X1 ∧ . . . ∧Xp−1)).

The interior product satisfies iXΩ0 = 0 and

[iX , iY ] = 0,

where Y ∈ Λ1. We can in fact extend the interior product in the same way as
we extended the exterior product so that for Xi ∈ Λ1

iX1∧...∧Xq
:= iX1

◦ . . . ◦ iXq

satisfies

iX1∧...∧Xq
ω(Xq+1, . . . , Xp) = ω(εX1∧...∧Xq

Xq+1 ∧ . . . ∧Xp)

and is therefore a q graded map, i.e.,

iX1∧...∧Xq
: Ω 7−→ Ω, Ωp 7−→ Ωp−q.

Remark 2.14

The interior product, iX , is a derivation only when X ∈ Λ1 is a vector field.
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If we recall the definition of the ordinary Lie derivative acting on forms we
immediately see how this can be generalized.

Definition 2.15

Let Ω be the graded algebra of p-forms on M , let X ∈ Λ1 be a vector field. Let
LX be the Lie derivative with following characteristics:

LX : Ω 7−→ Ω, Ωp 7−→ Ωp.

It is defined by

(LXω)(X1, . . . , Xp) = LXω(X1, . . . , Xp)− ω(LX(X1 ∧ . . . ∧Xp))

and satisfies Cartan’s infinitesimal homotopy formula

LX = [iX , d].

Let Y ∈ Λ1 be another vector field. The Lie derivative satisfies the following
equations:

[LX , d] = 0
[LX , iY ] = i[X,Y ]

[LX , LY ] = L[X,Y ]

So we can proceed, as in the previous subsection, by introducing the generalized
Lie derivative acting on forms by simply generalizing Cartan’s formula.

Definition 2.16

Let X ∈ Λq be a multivector on M , then the generalized Lie derivative on
p-forms is a map with following characteristics:

L̂X : Ω 7−→ Ω, Ωp 7−→ Ωp−q+1,

and is defined by

L̂X := [iX , d].

Remark 2.17

This generalized Lie derivative, L̂X , acting on forms is only a derivation on Ω
when X is a vector field.

By this remark we have a similar case to that of the previous subsection, now
however we do not know for sure that this map is dual to the generalized Lie
derivative acting on multivectors introduced before, but we have to show this.

Proposition 2.18

Let X = X1 ∧ . . . ∧Xq ∈ Λq be a q-vector and let ω ∈ Ωp be a p-form then the
generalized Lie derivative satisfies

(L̂Xω)(Xq+1, . . . , Xp+1) =

q
∑

i=1

(−1)i+1
LXi

ω(X1,
i√
. . . , Xq, Xq+1, . . . , Xp+1)−

− ω(ĽX(Xq ∧ . . . ∧Xp+1))

8



proof: By direct calculation:

(L̂Xω)(Xq+1, . . . , Xp+1) = (iX1∧...∧Xqd − (−1)qdiX1∧...∧Xq)(ω)(Xq+1, . . . , Xp+1) =

=dω(εX1∧...∧XqXq+1 ∧ . . . ∧ Xp+1) −

(−1)q
p+1
∑

i=q+1

(−1)i−q+1
LXi(iX1∧...∧Xqω)(Xq+1,

i√
. . . , Xp+1) +

(−1)q(iX1∧...∧Xqω)(∂(Xq+1 ∧ . . . ∧ Xp+1)) =

=

p+1
∑

i=1

(−1)i+1
LXiω(X1,

i√
. . . , Xp+1) − ω(∂εX1∧...∧XqXq+1 ∧ . . . ∧ Xp+1) −

−

p+1
∑

i=q+1

(−1)i+1
LXiω(X1, . . . , Xq , Xq+1,

i√
. . . , Xp+1) +

(−1)qω(εX1∧...∧Xq∂Xq+1 ∧ . . . ∧ Xp+1) =

=

q
∑

i=1

(−1)i+1
LXiω(X1,

i√
. . . , Xq, Xq+1, . . . , Xp+1) −

− ω(ĽX(Xq ∧ . . . ∧ Xp+1))

�

Put together we have now seen that all these maps come with their duals. This
is pointed out in following remark.

Remark 2.19

We see that these operators are formally adjoints to each others as acting on
forms and multivectors respectively and we can write

Ω Λ

d ←→ ∂

iX ←→ εX

L̂X := [iX , d] ←→ [∂, εX ] =: ĽX

as a correspondence table.

Now as we saw that we recovered the Schouten–Nijenhuis bracket when taking
the commutator of two generalized Lie derivatives acting on multivectors we
shall find out that we will get the same thing for the generalized Lie derivative
acting on forms (up to a sign).

Proposition 2.20

Let X ∈ Λp and Y ∈ Λq be two multivectors. Then the brackets defined through
the generalized Lie derivatives, i.e.,

Ľ[X,Y ]̌ := [ĽX , ĽY ]

L̂[X,Y ]̂ := [L̂X , ĽY ]

are related by

[X, Y ]̂ = −[Y, X ]̌ = (−1)(p−1)(q−1)[X, Y ]̌

proof: By combinatorics. �

9



2.3 Derivations on Ω

In this subsection we will look at the set of all derivations on the set of differ-
ential forms Ω on M . We will see that they are spanned by mappings involving
vector valued forms denoted Ωp

1, but as before we will start by looking at these
mappings acting on Λ and then see that their duals acting on forms are deriva-
tions. So lets first start with the exterior product.

Definition 2.21

Let I ∈ Ωp
1 be a vector-valued p-form on M , then the exterior product εI of I

is a map with following characteristics:

εI : Λ 7−→ Λ, Λq 7−→ Λq−p+1,

and if µ ∈ Perm(p+q) we can define the exterior product of I on a (p+q)-vector
by

εI(X1 ∧ . . . ∧Xp+q) :=
1

p!q!

∑

µ

(−1)µI(Xµ1
, . . . , Xµp

) ∧ . . . ∧Xµp+q

Remark 2.22

If I ∈ Ω1
1 is a endomorphism, i.e., a 1-1 tensor, then εI is a derivation on Λ.

We can now define the generalized Lie derivative of a vector-valued form acting
on differential forms by the immediate analogue of definition 2.16.

Definition 2.23

Let I ∈ Ωp
1 be a vector-valued p-form on M , then let us define the generalized

Lie derivative acting as a map on Λ with following characteristics:

ĽI : Λ 7−→ Λ, Λq 7−→ Λq−p

We define it in analogous way as before by

ĽI := [∂, εI ]

From the definition above we can now find the expression for the generalized
Lie derivative in terms of the ordinary commutator on vectors.

Proposition 2.24

Let I ∈ Ωp
1 be a vector-valued p-form on M , let Xi ∈ Λ1 be vector fields and

µ ∈ Perm(p + q). Then

ĽI(X1 ∧ . . . ∧Xp+q) =
1

p!(q − 1)!

∑

µ

(−1)µ[I(Xµ1
, . . . , Xµp

), Xµp+1
] ∧ . . . ∧Xµp+q

−

−
(−1)p−1

(p− 1)!(q − 1)!2!

∑

µ

(−1)µI([Xµ1
, Xµ2

], . . . , Xµp+1
) ∧ . . . ∧Xµp+q

proof:
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[19] plus the proof of 2.29 �

Now we are ready to study the set of derivations on Ω. We will not go into
details but only stress the differences appearing with this dual picture and refer
to [19] for a more detailed study. To start with we will define what we mean by
a algebraic derivation.

Definition 2.25

Let D ∈ Der Ω then D is said to be algebraic if

D|Ω0 = 0

Let ω ∈ Ω be a p-form on M , then if D is algebraic we have

D(fω) = fDω, ∀f ∈ C∞(M )

which means that D is tensorial.

We will see that the set of algebraic derivations on Ω is spanned by the interior
product of vector valued forms on M , so let us define the interior product again
as the dual map to the exterior product.

Definition 2.26

Let I ∈ Ωp
1 be a vector-valued p-form on M and let ω ∈ Ωq be a q-form. Then

define the interior product of I on Ω as a map with following characteristics:

iI : Ω 7−→ Ω, Ωq 7−→ Ωq+p−1.

Let ω ∈ Ωq be a q-form and define the internal product as the formal adjoint to
the exterior product as

iIω(X1, . . . , Xp+q−1) := ω(εI(X1 ∧ . . . ∧Xp+q−1)).

Now [19] tells us that not only is the map iI an algebraic derivation on Ω, but
that all algebraic derivations can be written in that way, so we have a one-to-one
correspondence.

Proposition 2.27

Let D ∈ Derk Ω be a graded derivation of degree k, then

D = iI

for some I ∈ Ωk+1
1 .

proof: See [19]. �

It is also clear that if we again introduce the generalized Lie derivative of vector-
valued forms by the analogue to Cartan’s formula we know that it must be a
derivation because it is now a commutator of two derivations.
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Definition 2.28

Let I ∈ Ωp
1 be a vector-valued p-form on M and define the generalized Lie

derivative on q-forms as a map with following characteristics:

L̂I : Ω 7−→ Ω, Ωq 7−→ Ωq+p,

defined by

L̂I := [iI , d]

What is not clear is that it again is dual to the generalized Lie derivative acting
on multivectors defined in 2.23 which indeed is no derivation on Λ unless I is a
vector.

Proposition 2.29

Let I ∈ Ωp
1 be a vector-valued p-form on M , ω ∈ Ωq a q-form and Xi ∈ Λ1 be

vectors. Then

(L̂Iω)(X1, . . . , Xp+q) =
1

p!q!

∑

µ

(−1)µ
LI(Xµ1

,... ,Xµp )ω(Xµp+1
, . . . , Xµp+q

)−

− ω(ĽI(X1 ∧ . . . ∧Xp+q))

proof: The proof is by direct calculation,

(L̂Iω)(X1, . . . , Xp+q) = ((iId − (−1)p−1diI)ω)(X1, . . . , Xp+q) =

=dω(εI(X1 ∧ . . . ∧ Xp+q))

− (−1)p−1

(

∑

i

(−1)i+1
LXi(iIω)(X1,

i√
. . . , Xp+q) − iIω(∂(X1 ∧ . . . ∧ Xp+q))

)

=

=
1

p!q!

∑

µ

(−1)µdω(I(Xµ1
, . . . , Xµp) ∧ . . . ∧ Xµp+q )

− (−1)p−1

(

∑

i

(−1)i+1
LXi(iIω)(X1,

i√
. . . , Xp+q) − ω(εI∂(X1 ∧ . . . ∧ Xp+q))

)

=

=
1

p!q!

∑

µ

(−1)µ
(

LI(Xµ1
,... ,Xµp )ω(Xµp+1

∧ . . . ∧ Xµp+q )+

+q(−1)p−1(−1)µiLXµi
ω(I(Xµ1

, . . . , Xµp ) ∧
µi

√
. . . ∧ Xµp+q )

)

− ω(∂εI(X1 ∧ . . . ∧ Xp+q))

− (−1)p−1

(

∑

i

(−1)i+1
LXiω(εI(X1,

i√
. . . , Xp+q)) − ω(εI∂(X1 ∧ . . . ∧ Xp+q))

)

=

=
1

p!q!

∑

µ

(−1)µ
LI(Xµ1

,... ,Xµp )ω(Xµp+1
, . . . , Xµp+q ) −

− ω(ĽI(X1 ∧ . . . ∧ Xp+q))

�

From [19] we also know that any derivation can be split into two parts, one part
which is algebraic and one which looks like the generalized Lie derivative.
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Proposition 2.30

Let D ∈ DerkΩ be a derivation of degree K on M then it can be uniquely be
decomposed like

D = L̂I + iJ

for some I ∈ Ωk
1 , J ∈ Ωk+1

1 . Furthermore we have the following equivalences

I = 0 ⇐⇒ D algebraic

J = 0 ⇐⇒ [D, d] = 0

proof: See [19]. �

Again we can introduce a bracket by looking at the commutator of two gener-
alized Lie derivations. This bracket is the Frölicher–Nijenhuis bracket.

Definition 2.31

Let I ∈ Ωp
1, J ∈ Ωq

1 be two vector-valued forms on M and let Ω1 denote the
set of all vector-valued forms on M then we define the Frölicher–Nijenhuis

bracket with following characteristics:

[I, J ] : Ω1 × Ω1 7−→ Ω1, Ωp
1 × Ωq

1 7−→ Ωp+q
1

Let µ ∈ Perm(p + q), then the following definitions of the Frölicher–Nijenhuis
bracket are equivalent

(i) L̂[I,J] :=[L̂I , L̂J ]

(ii) [I, J ](X1, . . . , Xp+q) :=
1

p!q!

∑

µ

(−1)µ[I(Xµ1
, . . . , Xµp

), J(Xµp+1
, . . . , Xµp+q

)] +

− J(ĽI(X1 ∧ . . . ∧Xp+q)) + (−1)pqI(ĽJ(X1 ∧ . . . ∧Xp+q))

proof: [19] plus 2.24 �

We will also find that if we define the bracket by the commutator of two gen-
eralized Lie derivations acting on multivectors we will again get the Frölicher–
Nijenhuis bracket up to a sign.

Proposition 2.32

Let I ∈ Ωp
1 and J ∈ Ωq

1 be two vector-valued forms then the brackets defined
through the generalized Lie derivatives, i.e.,

Ľ[I,J ]̌ := [ĽI , ĽJ ]

L̂[I,J ]̂ := [L̂I , ĽJ ]

are related by

[I, J ]̂ = −[J, I ]̌ = (−1)pq[I, J ]̌

proof: By combinatorics. �
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Figure 1: Foliation

3 Distributions and foliations

In this section we will review the basic concepts of distributions and foliations
on a manifold. We will start with a general treatment in the first part, where
neither a metric nor a connection is needed. We will see how we, from the
solutions of the M2,5-branes, find that the anti-symmetric tensor field of the
solution itself defines a foliation on the manifold. In the latter part we will
see how we can give these concepts more structure by adding a metric and a
connection.

3.1 General treatment

First we need to understand the basic concepts of distributions and foliations,
so let us start by defining these.

Definition 3.1

Let M be a manifold with tangent bundle TM , then a distribution on M

is a subset of the tangent bundle such that, for any point x in M , the fiber
Dx = D ∩ TxM is a vector subspace of TxM . The dimension of Dx is called
the rank of the distribution. We will denote the distributions of constant rank
k-distributions, where k is the rank.

Definition 3.2

Let M be a manifold with dimension m, then a (k-) foliation, F, is a family of
connected subsets, F = {Lα}, called leaves, such that

(i). ∪
α
Lα = M

(ii). Lα ∩ Lβ = 0, α 6= β

(iii). For any point x ∈M there exists a local coordinate system (chart (Ux, ϕ))in
which the leaves are coordinate surfaces.

It is clear from the definition of a foliation that it trivially defines a k-distribution
and that this always locally can be spanned by coordinate vectors. If M is a
manifold and xm are local coordinates in a patch U then we will split it to xm =

14



(xm, ym′

) where the leaves of the foliation are determined by local coordinate
surfaces like ym′

= Cm′

. The distribution associated with the leaves is then
spanned by {∂/∂m} which are the annihilators of the normal pfaffian forms of
the surfaces, dym′

. We will see that this distribution is trivially integrable, but
let us first define the concept.

Definition 3.3

Let D be a k-distribution on a manifold M , then the set of all vectors in D

forms a graded algebra on M with the usual wedge product. We will denote
this algebra

Λq
D

:= Λq(M )|D

ΛD := ⊕
q
Λq

D

where Λq
D

is the set of q-vectors lying in ∧qD. This algebra is a subalgebra of
Λ, i.e., ΛD ⊂ Λ. The distribution, D, is said to be integrable if the algebra
ΛD is closed under the Schouten–Nijenhuis bracket, that is

[ΛD, ΛD] ⊂ ΛD.

Remark 3.4

The usual definition of integrability of a distribution is that, taken any two
vectors X, Y ∈ Λ1

D
, the commutator of these vector fields will still be a vector

field of the distribution, or

[X, Y ] ⊂ Λ1
D, ∀X, Y ∈ Λ1

D,

but from the definition of the Schouten–Nijenhuis bracket we trivially see that
the above definition of integrability is the same. The basic property of integra-
bility is of course the existence of an integral manifold at every point, x ∈M .
Integrability also assures that this integral manifold is unique and that the di-
mension is equal to the rank of the integrable distribution.

Now obviously the distribution associated with the leaves of the foliation is in-
tegrable because it is locally spanned by coordinate vectors and any two vectors
built from these will be closed under the bracket in the sense that the resulting
vector will again lie in the span of these coordinate vectors. Now one can go
even further and prove that in fact any distribution of constant rank that is
integrable also defines a foliation.

Proposition 3.5

Let D be a k-distribution on a manifold M , then D defines a foliation if and
only if D is integrable. Furthermore the leaves of this foliation are the integral
manifolds of the distribution D.

proof: See [8]. �

So we get a 1-1 relation between the concept of an integrable distribution of
constant rank and a foliation.
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Remark 3.6

We see from the definition of a foliation and the equivalence to an integrable
distribution that if F is an integrable distribution and X ∈ ΛF is a vector field
lying in the distribution then in every patch there exist coordinates (xm, ym′

)
such that the vector field X can be expressed locally as

X = Xm∂m = Xm(x, y)
∂

∂xm
.

The coordinate surfaces ym′

= Cm′

are the leaves and ∂/∂xm are the basis
vectors along the leaves.

We have seen that a k-distribution can be imposed as a subset of the set of
p-vectors on M , which of course truncates at k + 1, and that it in fact is
a subalgebra under the Schouten–Nijenhuis bracket if and only if it defines a
foliation. But now we want to see how we can understand this in the co-picture,
where we look at the set of p-forms instead. So lets start with some basic
definitions.

Definition 3.7

Let D be a k-distribution on a manifold M , then the annihilator or the codis-

tribution of a distribution is denoted by, D
∗′, and defined by

D
∗′ :=

⋃

x∈M

D
∗
x
′

where

D
∗
x
′ := {ω ∈ T ∗

xM : iXω = 0, ∀X ∈ Λ1
D}.

The set of all pfaffian forms in D∗′ forms a graded algebra on M under the
wedge product. The algebra is denoted by

Ωp
D∗′ := Ωp(M )|D∗′ ,

ΩD∗′ := ⊕
p
Ωp

D∗′

where Ωp
D∗′ is the set of p-forms lying in ∧pD∗′. This algebra is a subset of the

algebra of differential forms on M , i.e., ΩD∗′ ⊂ Ω.

Definition 3.8

Let D be a k-distribution on a manifold M , then the ideal of D is defined by

ID :=⊕
p

Ip
D

,

Ip
D

={ω ∈ Ωp : ω(X1, . . . , Xp) = 0, ∀Xi ∈ Λ1
D},

then ID ⊂ Ω is to a subset of Ω.

Remark 3.9

We see that ΩD∗′ ⊂ ID, so the ideal of D is bigger than the set of forms spanned
by the codistribution. We can picture these two types of forms in the case when
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D is integrable and the annihilator locally is spanned by the pfaffian forms
{dym′

}, by

ω =ωm′

1
−m′

p
dym′

1 ∧ . . . ∧ dym′

p

η =ηm′

1
−m′

p
ϕm′

1 ∧ . . . ∧ ϕm′

p−1 ∧ dym′

p

where ω ∈ Ωp
D∗′ , η ∈ Ip

D
and ϕm′

are arbitrary pfaffian forms.

The reason for introducing both these two types of subsets of the graded algebra
of exterior forms on M is that, although the subset ΩD∗′ seems more natural,
we need the ideal to test the integrability of the distribution. In fact we have
following proposition.

Proposition 3.10

Let D be a k-distribution on a manifold M , let ID be the ideal of D then D is
integrable if and only if ID is closed under the exterior derivative, i.e.,

dID ⊂ ID.

proof: It is sufficient to prove that dω ⊂ I2
D for all pfaffian forms in ΩD∗′ . So let

ω ∈ Ω1
D∗′ and X, Y ∈ Λ1

D then

dω(X,Y ) = X[ω(Y )] − Y [ω(X)] − ω([X, Y ]) = −ω([X, Y ])

which is zero for all vector fields in Λ1
D if and only if the commutator lies in

Λ1
D , i.e., the distribution is integrable. �

So we see that we can equivalently express the integrability of the distribution
in the co-picture. Now we want to see the structure of the forms belonging to
these subsets of forms, especially those belonging to ΩD∗′ . So we will make
some preliminary definitions.

Definition 3.11

Let D be a k-distribution on a riemannian manifold M , let ω ∈ ∧T ∗M be a
differential form on M and let X ∈ D be a vector field of the distribution, then
we call ω

(i) semi− basic, if iXω = 0,

(ii) invariant, if LXω = 0,

(iii) basic, if iXω = 0, LXω = 0,

∀X ∈ D, with respect to D. In the case when the form is basic it is also called
an absolute integral invariant and equivalently satisfies iXω = 0, iXdω = 0.

We now see that the set of semi-basic forms in fact are those forms belonging to
ΩD∗′ . But we also noted that they in general not are closed under the exterior
derivative, not even in the case when D is integrable, but we had to introduce
the ideal to express the integrability. Now the set of basic forms do indeed close
under the exterior derivative. We can see the difference between semi-basic
and basic forms in the case when the distribution is integrable in the following
remark.
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Remark 3.12

Let F be a foliation and ΩF∗′ be graded algebra of the annihilator of F, then ΩF∗′

is the set of semi-basic forms with respect to F. Let ω ∈ Ωp
F∗′ be a semi-basic

p-form, it can then be expressed locally as

ω = ωm′

1
···m′

p
(x, y)dym′

1 ∧ . . . ∧ dym′

p .

If additionally LXω = 0, X ∈ Λ1
F
, then ω is basic and can then be expressed

locally as

ω = ωm′

1
···m′

p
(y)dym′

1 ∧ . . . ∧ dym′

p .

It should also be pointed out that if X ∈ ΛF is a multivector on M , tangent to
the leaves, the basic forms are those forms vanishing under the generalized Lie
derivative, i.e. L̂Xω = 0, ∀X ∈ ΛF.

So we see that in the integrable case the basic forms are those that are semi-
basic and constant along the leaves. As these forms are closed under the exterior
derivative, we can look at cohomology groups on the leaf space.

Definition 3.13

The set of basic forms of a foliation F is a subset of ΩF∗′ which we will denote
ΩBF

. The basic forms are closed under the exterior derivative, i.e.,

d : ΩBF
7−→ ΩBF

, Ωp
BF
7−→ Ωp+1

BF

so the basic forms form a subcomplex of the De Rahm complex. We can build
the set of closed basic p-forms, Zp

BF
, and the set of exact basic p-forms, Bp

BF
,

and form the basic cohomology groups

Hp
BF

:=Zp
BF

/Bp
BF

,

HBF
:=⊕

p
Hp

BF

which is the De Rahm cohomology of the leafspace of the foliation.

It shall be noted that although the manifold is nice the leaf space need not be. In
fact [9] argues that in certain cases it is in fact non-commutative, and the basic
cohomology groups can be infinite-dimensional even though M is compact. We
will not discuss these basic cohomology groups here but refer to [24]. We can
however say that it is easy to show that H1

BF
⊂ H1(M ).

We will now turn our study to the case when we are given a p-form and see
what this specific p-form can tell us in the sense of distributions.

Definition 3.14

Let ω ∈ Ωp be a p-form on M , then the kernel of ω and the rank of ω at
x ∈M , denoted kerx ω and rankxω respectively, are defined through the kernel
and the rank of the map fω|x : Λ1

x 7→ Ωp−1
x , defined by

fω(X)|x := iXω|x, X ∈ Λ1.
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Of course a p-form does not, in general, be of constant rank, but if it is we
simply denote it by rank ω. The rank and the kernel is of course dual to each
other in the sense that dimkerx ω + rankxω = m where m is the dimension
of the manifold, M . Now we can, given a specific p-form, make the following
definition.

Definition 3.15

Let ω ∈ Ω be a differential form on M , the characteristic subspace, Dx, of
ω at a point x ∈M is defined by

Dx := kerx ω ∩ kerx dω.

The class of ω at x is the codimension of Dx in TxM and the characteristic

distribution, D, of ω is simply D := ∪x∈M Dx.

Remark 3.16

The class of a differential form is the smallest number of variables by which we
can express it locally. If ω is a closed form then the class is equal to its rank.

To get a little better grip of what the class of a p-form is let us consider the
four-dimensional Yang–Mills theory.

Example 3.17

Let F be the Lie algebra valued field strength of a abelian gauge potential A in

a 4-dimensional space M4 then of course F is a Lie algebra valued two-form on

M4 and by [6] we know that the rank of F is either 2 or 4. If the rank is two we

know from definition 3.15 and the fact that F is closed that its characteristic

distribution, which for an F of constant rank would be a characteristic foliation,

would be two-dimensional. If this was the case we would for instance know

that in a flat manifold we could choose coordinates in such a way that the

two-dimensional foliation would be global coordinate surfaces. Now F would

not depend on these coordinates but should effectively be a two-dimensional

field strength. This is clearly not the case, and this is because the rank of F is

in fact four and this is due to the self-duality condition F = ∗F .

It should be noted that the set of p-forms of constant class is of great importance.
The reason for this becomes clear by the following proposition.

Proposition 3.18

Let ω ∈ Ω be a differential form on M with constant class, then the charac-
teristic distribution will be of constant dimension and the distribution will be
integrable, i.e., ω will define a foliation on M .

proof: Take X, Y ∈ Λ1
D where D is the characteristic distribution of ω, then L[X,Y ] =

LXLY ω−LY LXω = 0, and i[X,Y ]ω = LXiY ω− iY LXω = 0 which implies

[X, Y ] ∈ Λ1
D , so D is integrable and thus a foliation. �
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Corollary 3.19

Let ω ∈ Ω be a differential form on M with constant class, then ω is basic with
respect to the characteristic foliation defined by ω.

proof: By definition. �

So a p-form of constant class defines a foliation on M but then we know that
finding a foliation on M of dimension k is equal to finding a p-form on M of
constant class m− k. Note that the p-form need not be a m− k form but can
be an arbitrary p-form as long as p ≤ m− k and not a 0-form.

We look at the M5-brane solution.

Example 3.20

Let F4 be the four-form in D = 11 supergravity and consider the M5-brane
solution to the equations of motions in M11 [14, 10],

F = ∂m∆(y)εmnpqrdyn ∧ dyp ∧ dyq ∧ dyr

with coordinates (xµ, ym) along the brane and transverse to the brane respec-
tively. Then kerF = 6 and the rank of F is 5 = 11 − 6. Since F is closed we
know that the class of F is equal to the rank and is therefore equal to 5. The
characteristic distribution of F is nothing but the M5-brane itself which indeed
is integrable and thus defines a foliation of M11. We also see by definition that
F is a basic 4-form and because it is closed it must belong to the fourth basic
cohomology class, i.e.,

F ∈ H4
BF

,

where F is the M5-brane.

For the M2-brane it is instead ∗H that is basic and closed and thus define the

3-dimensional foliation of the membrane.

3.2 Distributions on riemannian manifolds

We will now proceed to see what structure distributions can have after we have
added a metric but first let us introduce notations regarding mappings with the
metric tensor.

Definition 3.21

When considering the metric, g, and its inverse as isomorphic mappings from
the tangent space into the cotangent space and vice versa, g : TM → T ∗M .
We will use the standard musical notation, i.e.,

♭X := g(X) ∈ T ∗
M , X ∈ TM ,

♯ϕ := g
−1(ϕ) ∈ TM , X ∈ T ∗

M .

We will also need the metric splitting of a two-tensor, so let us introduce notation
for this.
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Definition 3.22

We will define the metric trace, the anti-symmetrizer and the symmetrizer on
(2,0) tensors by

trT := T (Ea, ♯Ea)

∧T (X, Y ) :=
1

2
(T (X, Y )− T (Y, X))

⊙T (X, Y ) :=
1

2
(T (X, Y ) + T (Y, X))

When structuring distributions we need the Levi–Civita connection, i.e., the
unique metric and torsionfree connection. So let us start by defining it, perhaps
in an unfamiliar way.

Definition 3.23

Let M be a riemannian or pseudo-riemannian manifold with non-degenerate
metric, g, then the Levi–Civita connection is the unique torsionfree connection
defined by its action on a 1-form

∇ϕ(X, Y ) :=
1

2
(dϕ(X, Y ) + L♯ϕg(X, Y ))

The more familiar coordinate expression can easily be recovered by taking the
coordinate vectors for X, Y and the coordinate differential for ϕ.

We are now ready to define the deformation tensor related to every distri-
bution on a manifold with metric.

Definition 3.24

Let D be a k-distribution with projection P on a riemannian manifold M with
non-degenerate metric g. Let ∇ be the Levi–Civita connection with respect
to this metric and let P ′ := 1 − P be the coprojection of D. Now define the
following tensors with characteristics

H, L, K : Λ1
D × Λ1

D 7−→ Λ1
D′

κ : Λ1
D′ 7−→ R

and

(i) H(X, Y ) := P ′∇PXPY deformation tensor,

(ii) L := ∧H twisting tensor,

(iii) K := ⊙H extrinsic curvature tensor,

(iv) ♯κ := trH mean curvature tensor,

(v) W := K −
1

k
♯κg conformal curvature tensor.

This gives us the decomposition of the deformation tensor in its anti-symmetric,
symmetric-traceless and trace parts accordingly,

H = L + W +
1

k
♯κg.
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These are the definitions of the fundamental tensors of a distribution, and we
would like to make some comments about them. We see that the deformation
tensor can be split into the usual anti-symmetric, symmetric-traceless and trace
parts. So what does these parts say? If we just see them as generators of matrix
algebras we know that these splitting refers to one tensor, the twisting tensor,
that generates rotations, one tensor that generates deformations but leaves the
volume constant, the conformal curvature tensor, and one tensor that scales
the volume, the mean curvature tensor. In the case of distributions this is the
same although we now talk about how the distribution changes while going in
normal directions. From some important relations that we will see this becomes
evident. But first we need a relation to prove them.

Lemma 3.25

Let X, Y, Z ∈ Λ1 be vector fields on M with metric g. Let ∇X be the Levi–
Civita connection on (M , g) then

(LXg)(Y, Z) = g(∇Y X, Z) + g(Y,∇ZX).

proof: By direct calculation

(LXg)(Y,Z) =X[g(Y, Z)] − g([X,Y ], Z) − g(Y, [X, Z]) =

=X[g(Y, Z)] − g(∇XY −∇Y X, Z) − g(Y,∇XZ −∇ZX) =
{

g(∇XY, Z) = X[g(Y, Z)] − g(Y,∇XZ)
}

=g(∇Y X, Z) + g(Y,∇ZX).

�

So we get the important relations.

Proposition 3.26

Let D be a distribution on a manifold M with metric g, let further g(X, Y ) =
g(PX,PY ) be the induced metric on the distribution, then the symmetric part
of the deformation tensor can be written like

K(X, Y )(ϕ) =−
1

2
L♯ϕ′g(X, Y ), or ♭K(X, Y, Z) =−

1

2
LZ′g(X, Y ),

where the prime denotes projection along the normal directions by P ′. The
relation for the anti-symmetric part on the other hand is

L(X, Y ) =
1

2
P ′[PX,PY ]

proof: By direct calculation,

−
1

2
L♯ϕ′g(X, Y ) =−

1

2
(g(∇PXP ′♯ϕ,PY ) + g(PX,∇PY P ′♯ϕ)) =

=
1

2
(g(P ′♯ϕ,P ′∇PXPY ) + g(P ′∇PY PX,P ′♯ϕ)) =

=
1

2
(H(X,Y )(ϕ) + H(X, Y )(ϕ))

=K(X, Y )
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and

L(X, Y ) =
1

2
(H(X,Y ) − H(Y,X)) =

=
1

2
(P ′∇PXPY − P ′∇PY PX) =

=
1

2
P ′[PX,PY ].

�

Now it is evident that the twisting tensor which can be regarded as rotations of
the distributions while going in the normal directions in fact measures how far
the distribution is from being integrable. So we get a natural proposition from
this.

Proposition 3.27

Let D be a distribution on a manifold, then D defines a foliation if and only if
D is integrable, which on a riemannian manifold is equivalent to the vanishing
of the tensor L above.

proof: L = 0 ⇒ P ′[PX,PY ] = 0 ⇒ [X, Y ] ∈ Λ1
D , ∀X,Y ∈ Λ1

D ⇒ D integrable. Now

3.5 completes the proof. �

For the case of the extrinsic curvature we see from 3.26 that it indeed measures
the change of the induced metric on the distribution while going in normal di-
rections. If we look at conformal transformations we can see that the conformal
curvature tensor does not see volume changes.

Proposition 3.28

Let M be a riemannian manifold with metric g, let I be an almost product

structure on M which split the metric in g = g + g′ and let λ = e2φ be a
conformal transformation on g, i.e., cg = λg then the symmetric parts of the
deformation tensor will transform like

cK(ϕ) = K(ϕ) + λ
−1♯ϕ′[λ]g = K(ϕ) + 2♯ϕ[φ]g

cκ(X) = κ(X) + kλ
−1X ′[λ] = κ(X) + 2kX ′[φ]

cW = W
cL = L

proof: By direct calculation. �

If we put all this together we see that we indeed have 8 fundamental classes of
distributions on a riemannian manifold.

Definition 3.29

Let D be a distribution on a riemannian manifold M we have the following 8
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D

Figure 2: Overview of the different classes of a distribution

different classes

Name L = 0 W = 0 κ = 0 Notation

Distribution D
Minimal Distribution x MD
Umbilic Distribution x UD
Geodesic Distribution x x GD
Foliation x F
Minimal Foliation x x MF
Umbilic Foliation x x UF
Geodesic Foliation x x x GF

4 Foliations defined by (1,1) tensors

We will in this section show how foliations can be described by certain types of
endomorphisms on the tangent bundle. To start with we will therefore review
the concepts of endomorphisms on the tangent bundle. In here we will see that
there appears a fundamental tensor known as the Nijenhuis tensor which could
be seen as the curvature of the endomorphism. We will derive this tensor in
a different way from the ordinary one. This way of looking at the Nijenhuis
tensor will put it on an equal basis to that of curvatures from connections on
fiber bundles.

4.1 Endomorphisms on the tangent bundle

In this subsection we will look at endomorphisms, which basically are maps from
the tangent bundle into itself. These maps can be described by (1,1) tensors
and can equivalently be regarded as maps from the cotangent bundle to itself.
We will in this section depend a lot from the results in section 2, i.e., we will
need the concepts of generalized Lie derivation and we will need the Nijenhuis-
Föhlicher bracket which plays a central part in the study of the Nijenhuis tensor.
But let us now first define the basic structure of endomorphisms.
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Definition 4.1

Let M be a manifold and TM its tangent bundle, then an endomorphism I is
a map

I : TM 7−→ TM

i.e., it is a (1,1) tensor acting on the tangent bundle. Let X ∈ Λ1 be vector
field on M then we denote the action of I on X by

I : X 7−→ I(X) = IX

which is nothing but the exterior product mapping defined in 2.6 i.e.,

εIX = IX

and can be extended, to an arbitrary p-vector, with characteristics

εI : Λ 7−→ Λ, Λp 7−→ Λp

and action for Xi ∈ Λ1

εI(X1 ∧ . . . ∧Xp) =
∑

i

X1 ∧ . . . ∧ IXi ∧ . . . ∧Xp

We start by noticing that εI ∈ DerΛ is a derivation on the set of multivectors
on M . We also know that it maps vectors to vectors, which immediately lead
us to the thought of associating a new bracket to this endomorphism by just
taking the commutator of the respective maps.

Definition 4.2

The bracket associated with an endomorphism I is called I-bracket and denoted
by [·, ·]I . It has the characteristics of a normal bracket i.e.,

[ · , · ]I : Λ1 × Λ1 7−→ Λ1,

if X, Y ∈ Λ1 are two vector fields it is defined by

[X, Y ]I := [IX, Y ] + [X, IY ]− I[X, Y ]

and is thus manifestly antisymmetric. We also see from 2.24 that

[X, Y ]I ≡ LI(X ∧ Y )

We see that if I is the identity map the I-bracket reduces to the usual bracket.
Because of this we will denote

∂I := LI = [∂, εI ]

in the case when I is an (1,1) tensor and we see that ∂1 = ∂. Now ∂I can act
on a q-vector of arbitrary degree, in which the characteristics of the map looks
like

∂I : Λ 7−→ Λ, Λq 7−→ Λq−1.
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This new bracket has indeed the properties of a usual vector bracket, i.e., it
is a anti-symmetric, non-tensorial map taking two vectors into one. The non-
tensoriality looks like

[X, fY ]I − f [X, Y ]I = IX [f ]Y,

and is thus depending on the directional derivative of f along IX instead of X
as in the ordinary bracket. Now the original vector bracket is a Lie bracket, i.e.,
it fulfills the Jacobi identity. One question that immediately arises is if the I-
bracket is a Lie bracket. Generically the answer to this question is no. There are
however cases when indeed this I-bracket is a Lie bracket, so we need a measure
which tells when this is the case, and this measure will be the Nijenhuis tensor.

Definition 4.3

Let I be an endomorphism on M , then define the Nijenhuis tensor as the
failure of the I-bracket to be a Lie bracket, i.e., let X, Y, Z ∈ Λ1 be vector fields,
then the Nijenhuis tensor is a map with characteristics

ŇI(X, Y, Z) : Λ1 × Λ1 × Λ1 7−→ Λ1,

so it is a (3,1) tensor and it measures the failure of the I-bracket in fulfilling
the Jacobi identities. It is defined by

ŇI(X, Y, Z) := [[X, Y ]I , Z]I + [[Y, Z]I , X ]I + [[Z, X ]I , Y ]I

The Nijenhuis tensor can through the equality

ŇI(X, Y, Z) ≡ ∂I ◦ ∂I(X ∧ Y ∧ Z)

be seen as measuring the failure of ∂I to be a boundary operator.

Remark 4.4

As ∂ is not a well defined boundary operator, ∂I will of course not be well defined
either, not even when it is closed. The reason for denoting the Nijenhuis tensor
with a check is that it turns up in a more natural way as a (2,1) tensor why we
reserve the notation NI to this case.

It can easily be proved that the Nijenhuis tensor defined above indeed is a tensor,
i.e., multilinear. We saw that the Nijenhuis tensor measured in what amount
the I-bracket failed in fulfilling the Jacobi identities. This is the same as to say
that the Nijenhuis tensor measures to what extent the I-bracket fails to be a Lie
bracket. The conclusion is that the Nijenhuis tensor measures in what extent
the endomorphism I fails to be a Lie algebra homomorphism on the infinite-
dimensional Lie algebra of vector fields on M . This conclusion will be more
transparent when we introduce the other type of Nijenhuis tensor originating
from the treatment of endomorphisms on the cotangent bundle.

Definition 4.5

Let M be a manifold and T ∗M its cotangent space, let I be an endomorphism
of the tangent bundle, then It is the natural extension characterized by

It : T ∗
M 7−→ T ∗

M .
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Let ω ∈ Ω1, then the action of It on ω looks like

It : ω 7−→ It(ω) = ωI,

i.e., I acts as a right mapping on ω. It is nothing but the interior product of I
on a 1-form and it generalizes as the dual map of the exterior product. So for
ω ∈ Ωp we get

iIω(X1, . . . , Xp) : = ω(εI(X1∧, . . . ,∧Xp)) =
∑

i

ω(X1, . . . , IXi, . . . , Xp),

and we find that iI is an algebraic derivation of degree 0 with characteristics

iI : Ω 7−→ Ω, Ωp 7−→ Ωp

We do equally know in this case that iI ∈ DerΩ is a derivation on the cotangent
bundle and it will therefore be natural to introduce the commutator of iI and
the exterior derivative in an analogous way as we introduced the I-bracket.

Definition 4.6

Let I be an endomorphism on a manifold M and define the associated exterior
derivative, denoted by dI , with characteristics

dI : Ω 7−→ Ω, Ωp 7−→ Ωp+1

by the commutator

dI := [iI , d]

which now is the dual map to ∂I . Let ω ∈ Ωp be a p-form, then from 2.29 we
see

dIω(X1, . . . , Xp) =
∑

i

(−1)i+1
LIXi

ω(X1,
i√
. . . , Xp)−

−ω(∂I(X1 ∧ . . . ∧Xp))

or in I-bracket notation

dIω(X1, . . . , Xp+1) =
∑

i

(−1)i+1IXi[ω(X1,
i√
. . . , Xp+1)]−

−
∑

i<j

(−1)i+j+1ω([Xi, Xj ]I , X1,
i√
. . .

j√
. . . , Xp+1)

Now we would like to ask whether this new operator, with the same mapping
characteristics as the exterior derivative, is a coboundary operator or not, i.e.,
whether it is nilpotent or not. So in analogy to the treatment of the I-bracket
we introduce a new type of Nijenhuis tensor which measures to what extent the
associated exterior derivative dI fails in being nilpotent.
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Definition 4.7

Let I be an endomorphism on M and define the Nijenhuis tensor as the
measure of how much dI fails to be a coboundary operator. The Nijenhuis
tensor is thus a (2,1) tensor. Let X, Y ∈ Λ1 be vector fields on M , then the
characteristics of the Nijenhuis tensor are

NI(X, Y ) : Λ1 × Λ1 7−→ Λ1

and we define it through the quadratic action of dI on functions f ∈ C∞(M ),

< −NI(X, Y ), df >:= dIdIf(X, Y ).

As we see the Nijenhuis tensor measures the failure in closure of the operator
dI and can thus be considered as a form of torsion. Alternatively, as the below
equivalent definition shows, it measures the curvature of the endomorphism,
i.e.,

NI [X, Y ] := I([X, Y ]I)− [I(X), I(Y )],

so the Nijenhuis tensor can be seen as measuring how far this endomorphism is
from being a Lie algebra homomorphism of the infinite-dimensional Lie algebra
of vector fields on M .

proof: The proof follows from definition 4.2 and 2.31. �

Remark 4.8

Notice that the expression for the Nijenhuis tensor in definition 4.7 differs by a
sign from the original definition. This definition turns out to be more natural in
two different aspects. First of all we find that it looks similar to the curvature of
algebraic gauge theory and further we see that if ∇ is a connection with torsion
on M , then ∇ ∧ ∇f(X, Y ) =< −T (X, Y ), df >. We will show later that the
Nijenhuis tensor can in fact be viewed as a kind of torsion, which makes the
new sign natural.

When we write the Nijenhuis tensor on the above form the connection to al-
gebraic gauge theory is clear. In algebraic gauge theory we have a principal
bundle 0→ A→ E → B → 0 and a connection ρ : B → E with curvature

F (X, Y ) := ρ([X, Y ]|B)− [ρ(X), ρ(Y )]|E .

The curvature therefore measures to what extent ρ fails to be a Lie algebra ho-
momorphism. The conclusion is that the Nijenhuis tensor describes curvatures
in principal bundles. We will look at this more thoroughly later, but first we
will examine some basic relations involving the Nijenhuis tensor that will be
needed in the sequel. We start with a small lemma.

Lemma 4.9

Let I, I1, I2 be endomorphisms on M and let X, Y ∈ Λ1 be two vector fields,
then

(i) LXI(Y ) = [X, IY ]− I[X, Y ]

(ii) [I1, I2](X, Y ) =[I1X, I2Y ] + [I2X, I1Y ]− I1[X, Y ]I2 − I2[X, Y ]I1
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proof: (i) by direct calculation LXI(Y ) = LX(IY ) − I(LXY ) = [X, IY ] − I [X, Y ]

and

(ii) directly from definition 2.31. �

Proposition 4.10

Let I, I1, I2 be endomorphisms on M and let X, Y ∈ Λ1 be two vector fields,
then we have the following relations involving the Nijenhuis tensor.

(i) NI(X, Y ) = (ILXI −LIXI)(Y )

(ii) NI = −
1

2
[I, I]

(iii) NλI = λ2NI

(iv) NI1+I2 = NI1 + NI2 − [I1, I2]

proof: (i) follows from the first part of lemma 4.9 while (ii), (iii) and (iv) is a direct

consequence of the properties of the bracket in lemma 4.9. �

We will also list some properties involving the identity endomorphism which as
expected turns out to be trivial.

Proposition 4.11

Let I be a endomorphism on M and 1 the identity operator (endomorphism),
then we have the following relations involving the Nijenhuis tensor

(i) [1, I] = 0

(ii) N1+I = NI

proof: Trivial. �

Now we have defined two types of Nijenhuis tensors, one as the natural one
occurring on the space of p-vectors and the other appearing on the space of
differential forms. Of course there will be no surprise to us that these two types
of tensors in fact are related. This relation will be seen in following proposition.

Proposition 4.12

Let X, Y, Z ∈ Λ1 be vector fields on M and let ÑI be the Nijenhuis tensor
defined in 4.3 and NI be the one defined in 4.7. These are then related as

ÑI(X, Y, Z) =
∑

cycl

NI([X, Y ], Z) + [NI(X, Y ), Z]

proof:

29



By definition 2.31 and proposition 2.24 we get

ÑI(X, Y, Z) = ∂I∂I(X ∧ Y ∧ Z)

=
1

2
[ĽI , ĽI ](X ∧ Y ∧ Z)

= −Ľ 1
2
[I,I](X ∧ Y ∧ Z)

= ĽNI (X ∧ Y ∧ Z)

=
∑

cycl

NI([X, Y ], Z) + [NI(X, Y ), Z]

�

We also have the complete relation when dI acts on an arbitrary differential
form, which follows.

Proposition 4.13

Let I be an endomorphism on M and dI be its associated coboundary operator,
let ∂I be the formal boundary operator associated with the endomorphism, then
we have

dIdIω(X1, . . . , Xp+2) =
∑

i<j

(−1)i+j
LNI(Xi,Xj)ω(X1,

i√
. . .

j√
. . . , Xp+2) +

ω(∂I∂I(X1 ∧ . . . ∧Xp+2))

proof: By 2.31 and 2.29, using dIdI = 1
2
[L̂I , L̂I ] = −L̂NI

. �

4.1.1 Manifolds with metric

If we add to the manifold the structure of a non-degenerate metric, we are able
to introduce a Levi–Civita connection and we can in a similar fashion as above
introduce a new bracket structure, the Jordan bracket.

Definition 4.14

Let M be a riemannian manifold with Levi–Civita connection ∇, then define
the Jordan bracket, denoted by {·, ·}, with the following characteristics:

{ · , · } : Λ1 × Λ1 7−→ Λ1,

by

{X, Y } := ∇XY +∇Y X

where X, Y ∈ Λ1 are vector fields on M . Now define the Jordan bracket associ-
ated with an endomorphism I, denoted {·, ·}I , in an analogous fashion to [·, ·]I ,
by

{X, Y }I := {IX, Y }+ {X, IY } − I{X, Y }.
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We see that the Jordan bracket associated with an endomorphism is defined in
a similar fashion as the I-bracket was earlier. It should also be pointed out that
the Jordan bracket and the usual vector bracket of two vectors, X, Y ∈ Λ1 in
fact only measure the symmetric and anti-symmetric parts of the tensor ∇XY .
We can also introduce the Jordan tensor in the same way as we did with the
Nijenhuis tensor.

Definition 4.15

Let the triplet (M , g, I) define a riemannian almost product structure, and let
{·, ·} be the Jordan bracket, then define the Jordan tensor associated to I,
denoted MI , with the following characteristics:

MI : Λ1 × Λ1 7−→ Λ1,

by

MI(X, Y ) := I{X, Y }I − {IX, IY }

where X, Y ∈ Λ1 are vector fields on M . The analogy to the Nijenhuis tensor
is obvious .

So we see that the Jordan tensor measures the failure of the Jordan bracket
to commute with the endomorphism, I. We also get similar relations for the
Jordan tensor as for the Nijenhuis tensor earlier.

Proposition 4.16

Let I, I1, I2 be endomorphisms on M and let X, Y ∈ Λ1 be two vector fields.
Introduce the operator TX := ∇X −LX , then we have the following relations
involving the Jordan tensor.

(i) MI(X, Y ) = (ITXI −TIXI)(Y )

(ii) MI = −
1

2
{I, I}

(iii) MλI = λ2MI

(iv) MI1+I2 = MI1 + MI2 − {I1, I2}

In short, the Nijenhuis tensor measures the non-commutativity between an en-
domorphism I and the antisymmetric part of the Levi–Civita connection, while
the Jordan tensor measures the non-commutativity between an endomorphism
I and the symmetric part of the Levi–Civita connection. As the anti-symmetric
part of the Levi–Civita connection is nothing but the usual vector bracket (or
the exterior derivative if seen as acting on forms), we note that the Nijenhuis
tensor is independent of the metric and thus definable even without a metric
present. This has been commented on earlier. If we now have a metric, the two
structures can be combined naturally to form the deformation tensor associated
with an endomorphism.

Definition 4.17

Let I be an endomorphism on a manifold M with non-degenerate metric, g. Let
∇ be the Levi–Civita connection on M and define the deformation tensor
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associated with the endomorphism I, denoted HI , with the following character-
istics:

HI : Λ1 × Λ1 7−→ Λ1.

HI is defined by the expression

HI(X, Y ) := (I∇XI −∇IXI)(Y ),

where X, Y ∈ Λ1 are two vector fields on M . We immediate note the equivalent
definition

HI(X, Y ) := NI(X, Y ) + MI(X, Y ).

We will later see that in the case where the endomorphism I is a riemannian
almost product structure the deformation tensor will be analogous to that in
the earlier section.

4.2 Foliations from endomorphisms

The preceding sections give us the opportunity to formulate the concepts of
distributions and foliations in the framework of a special type of endomorphism
on the tangent bundle. We will see that the type of endomorphism will be very
similar to that of an almost complex structure. But to start with we will change
our notation a bit in order to get a more compact language when considering
distributions on a manifold.

Notation 4.18

We will denote the objects on our space with an underline, i.e.,

M Manifold

TM Tangent bundle of M

T ∗
M Cotangent bundle of M

g Metric on M

d Exterior derivative

X Vector field on M

to list the primarily used objects. We will use this underlining principle for all
objects on M whenever there may be a risk of confusion.

When considering endomorphisms in the preceding subsection, where we de-
fined the Nijenhuis tensor, we were treating endomorphisms in the most general
sense and had no conditions on the endomorphism I at all. But there are of
course certain types of endomorphisms that are more interesting than others.
In mathematics there are four basic types which are of great importance. We
will define them below.
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Definition 4.19

Let I be an endomorphism tensor of type (1,1), i.e., it maps TM → TM or
T ∗M → T ∗M then I is called

(i) Nilpotent, if I2 = 0,

(ii) Idempotent, if I2 = I,

(iii) Almost product structure, if I2 = 1,

(iv) Almost complex structure, if I2 =−1.

Of course the concepts nilpotent and idempotent could be generalized to hold for
a different power than 2, but otherwise these are the four basic types. Interesting
to note is that for a nilpotent endomorphism ker I ⊂ ImI which implies that
rankI ≤ [n/2]. For an idempotent endomorphism the rank can be arbitrary.
The last two types of endomorphisms which are called almost product (complex)
structures are both of full rank. In this section we will see that an almost product
structure will be just the kind of endomorphism that one needs in the theory of
distributions and foliations. Although the study of almost product structures
could take place without introducing a metric on the manifold, we will focus on
the treatment of manifolds with a metric. We will only point out that, as seen
in previous subsection, all structure involving only the Nijenhuis tensor exist
even without metrics. But let us now introduce a metric on the manifold.

Definition 4.20

Let I be an almost product structure on a manifold M with riemannian metric
g and let X, Y ∈ TM be vector fields. Then the triplet (M , g, I) is called an
riemannian almost product structure if

g(IX, IY ) = g(X, Y )

or in other words, I is a automorphism of g in the sense that the following
diagram commutes:

TM

g

��

I // TM

g

��

T ∗M
It

// T ∗M

i.e.,

It ◦ g ◦ I = g

So we see that the endomorphism I conserves the length of a vector. This
immediately tells us that it must be a local O(m) transformation on the tangent
bundle. In the above definition we required that the metric satisfied g(X, Y ) =
g(IX, IY ) but of course from any riemannian metric not satisfying this we can
always construct a new one just by taking g̃(X, Y ) := g(X, Y )+g(IX, IY ) which
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would then satisfy the above condition. Therefore, this implies no restriction
on the manifold.

We will now look at the properties of a riemannian almost product structure
in a little more detail to find out in what sense it defines distributions on the
manifold.

Proposition 4.21

Let the triplet (M , g, I) define a riemannian almost product structure on M

with dimM = m, then

(i). I is a local O(m) matrix with 1
2m(m− 1) independent components.

(ii). All eigenvalues are ±1.

(iii). trI = 2k −m, where k is the number of positive eigenvalues.

(iv). There is a preferred base called the oriented base in which I is diagonal
and ordered, i.e., it takes the form

I =





















1
. . .

1
−1

. . .
−1





















proof: (i) Let {Ea} be an orthonormal frame, then ηab = g(Ea, Eb) = g(IEa, IEb) =

Ia
cIb

dηcd ⇒ I ∈ O(m). (ii) 1 = I2 = PDP
−1PDP

−1 ⇒ D2 = 1 ⇒ all

eigenvalues ±1. (iii) trI = k+(−1)(m−k) = 2k−m. (iv) Let {Eā = (Ea, Ea′)}

be a oriented and ordered base, then I = EaEa − Ea′

Ea′ . �

These properties of an almost product structure tells us that if we express our
vectors in terms of the eigenvectors of I (preferably in the oriented base) I acts
as reflecting the vectors in the hyperplane spanned by the eigenvectors with
positive eigenvalue 1. Now the set of vectors lying in this hyperplane will be
invariant under I while those lying in the normal hyperplane will change to
the opposite direction under I. One can say that I breaks the structure group
O(m) of TM down to O(k)×O(k′) where k′ := m− k. In that sense the set of
almost product structures with k positive eigenvalues is parameterized by the
grassmannian,

I ∈ Gr(k, m) =
O(m)

O(k)×O(k′)
(1)

The grassmannian has kk′ = k(m−k) independent components and parameter-
izes the space of k-planes in R

m. We can now let an almost product structure
define two complementary distributions for us by taking these complementary
hyperplanes spanned by the eigenfunctions with positive eigenvalues and by the
eigenfunctions with negative eigenvalues respectively.
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Definition 4.22

Let I be an almost product structure on M , then I defines two natural distri-
butions of TM , denoted D and D′ respectively, in the following way. Let

Dx := {X ∈ TxM : IX = X},

D
′
x := {X ∈ TxM : IX =−X},

then

D :=
⋃

x∈M

Dx, D
′ :=

⋃

x∈M

D
′
x.

Again it should be noted that the distributions defined above are independent
of the existence of a metric on M . The main difference is that in the case
where we have a metric the structure group of TM breaks down from GL(m)
down to O(m), and the almost product structure will thus be parameterized
under the grassmannian space previously introduced. In the case where we
don’t have a metric the almost product structure would be parameterized under
GL(m)/(GL(k) × GL(k′)). As we know that the almost product structure
squares to one, we can define two complementary projection operators, which
of course also are endomorphisms on the tangent bundle.

Definition 4.23

From an almost product structure I on a manifold M we can define two pro-
jection operators through

P :=
1

2
(1 + I)

P ′ :=
1

2
(1− I).

These will be mappings in the sense P : TM → D and P ′ : TM → D′ respec-
tively.

We see that we can regard the distributions D, D′ as subbundles of the tangent
bundle. In this sense the projection operators take an element in TM down to
an element in D and D′ respectively. The map is by definition surjective and if
we require that the almost product structure is Ck, or even C∞, the map will
be a surjective submersion. We can also introduce canonical inclusions with
respect to these submersions.

Definition 4.24

We can define the canonical inclusions P̃ and P̃ ′ of F and F
′ in TM by the

commutativity of the following diagram:

D
P̃ //

Id

��

TM

P
}}{{

{{
{{

{{

P′

""DD
DD

DD
DD

D′P̃′

oo

Id

��

D D′
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We see from the definition that these inclusions are equivalently defined by
PP̃ = 1D,P ′P̃ ′= 1D′ . These projection operators split the tangent bundle into
two complementary parts.

Proposition 4.25

Let M be a manifold, TM its tangent bundle, F ⊂ TM and F′ ⊂ TM two
subbundles with projectors P and P ′ respectively, then the following statements
are equivalent:

(i). D ∩D′ = 0, D ∪D′ = TM

(ii). The short sequence

0 −−−−→ D
P̃

−−−−→ TM
P′

−−−−→ D
′ −−−−→ 0

is exact.

proof: Trivial by the exactness of the sequence F
′ = TM /F. �

What this tells us is in fact that the almost product structure I in form of its
associated projection operators splits the tangent bundle into

TM = D⊕D
′. (2)

Later we will show that in the case of a principal bundle, one of the projec-
tion operators of I will in fact be the connection of the principal bundle, and
the Nijenhuis tensor, NI , will measure the curvature of this connection. An
interesting point regarding these inclusion maps is that if we restrict the pro-
jection operators to a submanifold M of M in such way that TM is spanned
by the eigenvectors of P , and that these furthermore are integrable, then a map
f : M 7→M is in fact an embedding and P̃ the associated embedding matrix.
We will see this more transparently later, but first we will come back to the
Nijenhuis tensor and investigate how its structure is affected by imposing the
condition of an almost product structure to the endomorphism I.

Lemma 4.26

Let I be an almost product structure on a manifold M and let its associated

projection operators be P := 1
2 (1 + I), P ′ := 1

2 (1− I), then

(i) NP =NP′

(ii) NI =4NP

(iii)
1

2
[P ,P ′] =NP

(iv) NP(X, Y ) =− P ′[PX,PY ]− P [P ′X,P ′Y ]

proof: By direct calculation
(i) NP = 1

2
[P ,P ] = 1

2
[1 − P ′, 1 − P ′] = 1

2
[P ′,P ′] = NP′,

(ii) NI = NP−P′ = N2P−1 = 4NP ,
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(iii) 1
2
[P ,P ′] = 1

2
[P , 1 − P ] = NP ,

(iv) -

NP (X, Y ) =[PX,PY ] + P2[X, Y ] − P [PX, Y ] −P [X,PY ] =

=[PX,PY ] + P [X, Y ] − P [X, Y ] + P [P ′X, Y ] −P [X,PY ] =

=P ′[PX,PY ] + P [PX,PY ] + P [P ′X,PY ] +

+ P [P ′X,P ′Y ] − P [PX,PY ] − P [P ′X,PY ] =

=P ′[PX,PY ] + P [P ′X,P ′Y ]

�

From the above lemma it is clear that the Nijenhuis tensor measures to what
extent the two complementary distributions, associated with an almost product
structure, fail to integrable.

Proposition 4.27

Let the triplet (M , g, I) define an riemannian almost product structure and let
L, L′ be the twisting tensors of the distributions defined by I, then

1

8
NI = −L− L′.

proof: By 3.26 and 4.27. �

Again it is noted that all these tensors are invariant under the metric and
exist even without a metric on the manifold. We see that in case we have
a foliation, proposition 3.27 tells us that at least one of the twisting tensors
vanishes. This is the same as saying that NI(X, Y ) is an eigenvector of I,
i.e., INI(X, Y ) = ±NI(X, Y ). In the case when both associated distributions
are integrable, the Nijenhuis tensor vanishes and we have two complementary
foliations on the manifold. We will see later that this will lead us to the case
where the exterior algebra in fact splits and becomes doubly graded under the
exterior derivatives associated with complementary projections P ,P ′ of I. But
let us first see what extra structure an almost product structure will give us in
the case where we indeed have a metric on the manifold. We start be noticing
that to every metric g on M , we have two complementary metrics associated
with the almost product structure.

Definition 4.28

Let M be a riemannian or pseudo-riemannian manifold with metric, g, I a
reflective structure with P and P ′ the corresponding projectors, then define the
two associated metrics with respect to the reflective structure by

g(X, Y ) := g(PX,PY ), g′(X, Y ) := g(P ′X,P ′Y )

which implies that g splits into these two parts, i.e.,

g = g + g′.
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Of course we note that it is the condition g(IX, IY ) = g(X, Y ) that implies
that two complementary vectors are orthogonal, i.e., g(PX,P ′Y ) = 0. In an
analogous way to which we deduced the new structure to the Nijenhuis tensor
we can proceed to find out how an almost product structure reduces the Jordan
tensor. We will see that due to the similar bracket structure the structure found
in the Nijenhuis tensor will be similar.

Lemma 4.29

Let I be an almost product structure on a manifold M and let its associated

projection operators be P := 1
2 (1+ I), P ′ := 1

2 (1− I). Let M denote the Jordan
tensor, then

(i) MP =MP′

(ii) MI =4MP

(iii)
1

2
{P ,P ′} =MP

(iv) MP(X, Y ) =− P ′{PX,PY } − P{P ′X,P ′Y }

proof: Similar to that of 4.27. �

As the Jordan bracket is just the symmetric part of the covariant derivative
while the usual vector bracket can be regarded as the anti-symmetric part, the
structure on the bracket level will of course be similar, but they do of course
measure two different things. Notable is that, in contrary to the Nijenhuis
tensor, the Jordan tensor makes no sense in a manifold without metric but the
connection used in the Jordan bracket must be metric.

Proposition 4.30

Let the triplet (M , g, I) define a riemannian almost product structure, K, K ′

be the extrinsic curvature tensors of the distributions defined by I, then

1

8
MI = −K −K ′.

proof: By lemma 4.29 and definition 3.24. �

So, put together, we see that all the structure of two complementary distribu-
tions can be put into this single almost product structure I. The deformation
tensors are recovered by the associated Nijenhuis tensor and Jordan tensor, of
which the Nijenhuis tensor contains the integrability conditions while the Jordan
tensor contains the extrinsic curvature parts. We will use this in the classifica-
tion scheme of riemannian almost product structures in next subsection. Now
however we are interested in the connection ∇. First of all it is easily proven
that although annihilating the metric g it does not annihilate g, g′. We would

then instead like a new connection which we will denote ∇̃ and call the adapted
connection that does annihilate all these metrics so it commutes with all of
them.
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Definition 4.31

Let M be a riemannian or pseudo-riemannian manifold with non-degenerate
metric g and corresponding Levi–Civita connection∇. Let I define a foliation in
the previous sense, then the following two definitions of the adapted connection
are equivalent

(i). ∇̃XY := ∇XY + A(X, Y ), A(X, Y ) := 1
2I∇XI(Y )

(ii). ∇̃XY := P∇XPY + P ′∇XP
′Y

proof: The proof is immediate. �

We will soon prove that this connection indeed annihilates all the metrics, and
it is therefore suitable for calculations on the subbundles generated by the al-
most product structure I. But first we will introduce yet another connection,
called the Vidal connection [25], not with the property of being metric but with
additional properties which will become clear later.

Definition 4.32

Let M be a riemannian or pseudo-riemannian manifold with non-degenerate
metric g and corresponding Levi–Civita connection ∇, let I define a foliation in
the previous sense, then the Vidal connection is defined by

˜̃∇XY := ∇̃XY + B(X, Y ), B(X, Y ) :=
1

4
(∇IY I + I∇Y I)(X).

Of course both the tensors A and B will only contain parts of the deformation
tensor and are in fact related.

Proposition 4.33

Let B be the tensor defined in 4.32 and A the tensor defined in 4.31, then we
can express the tensor B in terms of A and the almost product structure I as

B(X, Y ) =
1

2
(A(Y, X)−A(IY, IX)) .

proof: By direct calculation from the definitions,

1

2
(A(Y,X) − A(IY, IX)) =

1

4
(I∇Y I(X) − I∇IY I(IX)) =

=
1

4
(I∇Y I + ∇IY I)(X) =

=B(X, Y )

�

We will see the total structure of these two connections last in this subsection,
and we will first list a number of their fundamental properties. The most im-
portant property that both these connections satisfy is that they commute with
the almost product structure.
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Proposition 4.34

Let ∇̃ denote the adapted connection defined in 4.31 and ˜̃∇ the Vidal connection
defined in 4.32, then their principal feature is that they both commute with the
almost product structure I, i.e.,

∇̃XI = ˜̃∇XI = 0

proof: (i)

∇̃XIY =∇XIY +
1

2
(I∇XI)(IY ) =

=I∇XY + (∇XI)(Y ) −
1

2
(∇XI)(Y ) =

=I∇XY +
1

2
I2(∇XI)(Y ) = I∇̃XY

(ii)

˜̃∇XIY =∇̃XIY +
1

4
(∇I2Y I + I∇IY I)(X) =

=I∇̃XY +
1

4
(I2∇Y I + I∇IY I)(X) =

=I ˜̃∇XY

�

As already mentioned, the adapted connection is metric. This is not the case
for the Vidal connection, but it is nevertheless important. Its properties will
be examined in the following subsection, where the basic types of riemannian
almost product structures will be classified. But let us now show that the
adapted connection indeed annihilates all associated metrics. To help us out we
need the following lemma.

Lemma 4.35

Let A be the tensor defined in 4.31, then we have the relation

g(A(X, Y ), Z) + g(Y, A(X, Z)) = 0

proof: 2g(A(X, Y ), Z) = g(I∇XI(Y ), Z) = g(∇XI(Y ), IZ) =

g(∇XIY − I∇XY, IZ) = −g(Y, I∇XIZ −∇XZ) = −g(Y, I∇XI(Z)) =

−2g(Y, A(X,Z)) �

Now it is straightforward to prove that the adapted connection is metric.

Proposition 4.36

Let the triplet (M , g, I) be a riemannian almost product structure on M and

∇̃ the adapted connection defined in 4.31, then this connection is metric with
respect to the splitting of g according to 4.28, i.e.,

∇̃g = 0

∇̃g′ = 0
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proof: We have

∇̃Xg(Y,Z) =X[g(Y, Z)] − g(∇̃XY, Z) − g(Y, ∇̃XZ) =

= − g(A(X,Y ), Z) − g(Y, A(X,Z)) = 0,

and ∇̃XI = 0 ⇒ ∇̃XP = 0 so we see

(∇̃Xg)(Y,Z) =X[g(Y,Z)] − g(∇̃XY, Z) − g(Y, ∇̃XZ) =

=X[g(PY,PZ)] − g(P∇̃XY,PZ) − g(PY,P∇̃XZ) =

=X[g(PY,PZ)] − g(∇̃XPY,PZ) − g(PY, ∇̃XPZ) =

=(∇̃Xg)(PY,PZ) = 0

�

We can now see in a more transparent way how the different parts of these
connections look. It becomes most conceptually clear if we use the oriented
base.

Proposition 4.37

Let the triplet (M , g, I) define a riemannian almost product structure, let ω,

ω̃ and ˜̃ω denote the connection one-forms of the Levi–Civita connection, the
adapted connection and the Vidal connection respectively. Let furthermore
H, H ′ denote the deformation tensors with respect to I and C, C′ be coefficients
of anholonomy, then

ω =

[(

ω H
−Ht Ω

)

,

(

Ω′ H ′

−H ′t ω′

)]

ω̃ =

[(

ω 0
0 Ω

)

,

(

Ω′ 0
0 ω′

)]

˜̃ω =

[(

ω 0
0 C

)

,

(

C′ 0
0 ω′

)]

proof: Let Eā = (Ea, Ea′) be the normed eigenvectors of I , i.e., IEa = Ea, IEa′ =
−Ea′ , then we get ω from the definition ∇āEb̄ =: ωāb̄

c̄Ec̄ and the definition

of the deformation tensor Hab
c′ := P ′∇aEb = ωab

c′Ec′ . We have furthermore

denoted the normal connections by Ω, i.e., ωab′
c′ =: Ωab′

c′ . Now from the
relation A(X, Y ) = 1

2
(I∇XIY −∇XY ) we get in the same basis

Aāb̄
c̄ =

[(

0 −Hab
c′

−Hab′
c 0

)

,

(

0 −H ′
a′b′

c

−H ′
a′b

c′ 0

)]

so ω̃ follows. If we write B(X, Y ) = 1
4
(∇IY Ix − I∇IY X + I∇Y IX −∇Y X)

we similarly get

Bāb̄
c̄ =

[(

0 0

0 −H ′
b′a

c′

)

,

(

−Hba′

c 0
0 0

)]

.

Finally, from the torsion equation we have 0 = ωab′
c′ − ωb′a

c′ − Cab′
c′ ⇒

Ωab′
c′ − H ′

b′a
c′ = Cab′

c′ . �
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4.3 Almost product manifolds, the classification

In this section we will present the different classes of riemannian almost product
structures, which will be shown to follow from the different classes of deforma-
tion tensors of section (3). These different classes are primarily split into three
different types, basically refering to the three cases when either both distribu-
tions associated with an almost product structure are integrable, only one is, or
the last type where none is integrable. In the first case the manifold is doubly
foliated, in the second singly, and in the third not foliated at all, of course with
respect to the almost product structure.

4.3.1 The types defined by the Nijenhuis tensor

To begin with we will see that there are relations between the Nijenhuis tensor
and the two new connections introduced in the preceding subsection. These
relations are characterized by only involving the torsion parts of the two con-
nections.

Proposition 4.38

Let the triplet (M , g, I) define an riemannian almost product structure, let NI

denote the Nijenhuis tensor of I and ∇̃ the adapted connection defined in 4.31,
then we have the following relation

1

2
NI(X, Y ) = T̃ (X, Y ) + T̃ (IX, IY )

proof: By definition 4.31 we get

T̃ (X, Y )+T̃ (IX, IY ) = ∇̃XY − ∇̃Y X − [X, Y ] + ∇̃IXIY − ∇̃IY IX − [IX, IY ] =

=
1

2
(∇XY + I∇XIY −∇Y X − I∇Y IX) − [X, Y ] +

+
1

2
(∇IXIY + I∇IXY −∇IY IX − I∇IY X) − [IX, IY ] =

=
1

2
(I∇XIY − I∇Y IX + I∇IXY − I∇IY X − I2[X, Y ] − [IX, IY ]) =

=
1

2
(I [X, IY ] + I [IX,Y ] − I2[X, Y ] − [IX, IY ]) =

=
1

2
NI(X, Y ).

�

In the case of the Vidal connection, which in the classification scheme will be
more important to us, we have an even stronger relation.

Proposition 4.39

Let the triplet (M , g, I) define an riemannian almost product structure, let NI

denote the Nijenhuis tensor of I and ˜̃∇ denote the Vidal connection defined in
4.32, then we have the relation

1

4
NI(X, Y ) = ˜̃T (X, Y )
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proof: Similar to the proof in 4.38. �

We see that the torsion of the Vidal connection has a one-to-one correspondence
with the Nijenhuis tensor while in the case of the adapted connection the torsion
tensor contains the Nijenhuis tensor but also some additional terms. These
terms are in fact the entire deformation tensor, so the adapted connection is not
very suitable for our study of different riemannian almost product structures.
Now putting all information involving the Nijenhuis tensor together, we get the
following theorem.

Theorem 4.40

Let the triplet (M , g, I) define a riemannian almost product structure, let D, D′

be the associated distributions and let L, L′ be the skew tensors of the deforma-
tion, then the first type of almost product structure corresponding to a doubly
foliated manifold can be seen by the following equivalent statements,

(i) NI = 0,

(ii) L = 0, L′ = 0,

(iii) ˜̃∇ is torsionless,

(iv) D, D′ are integrable.

proof: From propositions 4.27, 4.39 and 3.27. �

So we see, in the case where the endomorphism I denotes a riemannian almost
product structure, that the Nijenhuis tensor contains two parts L, L′, measuring
the failure of integrability in the two complementary distributions D, D′ respec-
tively. We also see that an equivalent treatment is to look at the torsion of the
Vidal connection which also measures the failure of integrability of the two com-
plementary distributions associated with I. Here we manifestly see the splitting
of riemannian almost product structures into three different types characterized
by different conditions on the Nijenhuis tensor.

Proposition 4.41

Let the triplet (M , g, I) denote a riemannian almost product structure, let NI

denote the Nijenhuis tensor associated with I, then NI characterizes three dif-
ferent types by

NI(X, Y ) = 0 doubly foliated

INI(X, Y ) = ±NI(X, Y ) singly foliated

INI(X, Y ) 6= ±NI(X, Y ) no foliation.

We will see some examples involving the two types of foliated almost product
structures later, but we will first examine what extra structure these two types
give us. We will start by introducing two new differential operators associated
with an almost product structure I.
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Definition 4.42

Let I be an almost product structure on a manifold M with exterior derivative
d. Let furthermore dI denote the exterior derivative associated with I and define
two new differential operators by

d :=
1

2
(d + dI)

d′ :=
1

2
(d− dI)

An equivalent definition is by the two projection operators defined by the en-
domorphism I, P := 1

2 (1 + I) and P ′ := 1
2 (1− I), then the operators are simply

d ≡ dP and d′ ≡ dP′.

These differential operators will be of utmost importance in the case where we
have a vanishing Nijenhuis tensor.

Proposition 4.43

Let I be an almost product structure on a manifold M , and NI the Nijenhuis
tensor associated with I, then if NI = 0 the new differential operators defined
in 4.42 will be nilpotent and thus coboundary operators. The exterior algebra
will become doubly graded with respect to these new coboundary operators.

proof: We know from lemma 4.26 that NI = 0 ⇒ NP = NP′ = 0 why both d and

d′ are nilpotent. They are thus coboundary operators. Because of the doubly

foliated structure we know that they can be expressed locally by d = dxm∂m

and d′ = dym′

∂m′ . �

We see that if the Nijenhuis tensor vanishes the new differential operators are
in fact coboundary operators and the exterior algebra becomes doubly graded
under these two coboundary operators.

Definition 4.44

Let the triple (M , g, I) define a riemannian almost product structure, let NI = 0
and denote the set of doubly graded forms on M by Ωp,q = Ωp,q(M ) charac-
terized by

ω =
1

(p + q)!
ωm1...mpm′

1
...m′

q
(x, y)dxm1 ∧ . . . dxmp ∧ dym′

1 ∧ . . . dym′

q

where ω ∈ Ωp,q. We thus see that the new coboundary operators defined in 4.42
have the following characteristics:

d :Ω 7−→ Ω, Ωp,q 7−→ Ωp+1,q

d′ :Ω 7−→ Ω, Ωp,q 7−→ Ωp,q+1

and that the graded algebra of differential forms now becomes doubly graded.
The coboundary operators trivially satisfy the relations

d2 = 0,

d′2 = 0,

dd′ + d′d = 0.
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We see that it is in complete analogy to the case of an almost complex structure,
where the vanishing of the Nijenhuis tensor tells us that we have a complex
manifold which gives us a doubly graded exterior algebra under holomorphic
and anti-holomorphic coordinates. In this case though we have a splitting which
looks topologically like a product, taken into account that the almost product
structure I defines an Ehresmann foliation. This requirement is just that taking
any curve in a leaf of the foliation F and lifting it to another leaf by following
only normal directions, the quotient of their respective lengths shall exist. This
is the same as saying that the curves do not shrink to zero or blow up to
infinity as we lift them by normal curves. There do exist foliations which have
these types of singularities, also called Reeb components, see [23]. In the case
of a riemannian almost product structure defining a Ehresmann foliation this
amounts to saying that we are assured that the induced metrics on the two
complementary distributions exist and are non-singular. So letting I define an
Ehresmann foliation with vanishing Nijenhuis tensor it follows that the universal
covering space splits to a topological product, M̃ = M̃ × M̃ ′, where the tilde
denotes the universal covering space and the product is in the topological sense,
see [4, 5]. In an analogous way to the complex case, we also get a splitting of the
cohomology groups under these two new coboundary operators and the double
gradation.

Theorem 4.45

Let M be a manifold, let I be an almost product structure on M that defines
an Ehresmann connection, then the vanishing of the Nijenhuis tensor implies
that the de Rahm cohomology groups on M splits like

Hp(R) = ⊕
p=k+l

Hk,l(R)

proof: See [4] �

In the case of theorem 4.45 we see that the basic cohomology groups map iso-
morphically into these doubly graded cohomology groups. We have in this case
Hp

BF
= H0,p. Let us finally list some local properties of the different tensors

involved. We put them in a proposition but the proof will be immediate.

Proposition 4.46

Let the triplet (M , g, I) define a riemannian almost product structure, then we
have three basic types defined by the Nijenhuis tensor. We will see how the
local structure of the tensors involved look.

(i) doubly foliated ⇔ NI = 0.
In this case, where the Nijenhuis tensor of the almost product structure
vanishes, we have a doubly graded tensor algebra. We can therefore write
the oriented vielbeins on the form

Ea = Ea
m∂m, Ea′ = Ea′

m′

∂m′ ,

Ea = dxmEm
a, Ea′

= dym′

Em′

a′

,

where of course Ea
m, Ea′

m′

, Em
a, Em′

a′

are functions on M satisfying
Ea

mEm
b = δa

b, Em
aEa

n = δm
n, Ea′

m′

Em′
b′ = δa′

b′ , Em′
a′

Ea′
n′

= δm′
n′

.
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The metric takes the form

g = ηabE
aEb + ηa′b′E

a′

Eb′ =

= gmn(x, y)dxmdxn + g′m′n′(x, y)dym′

dyn′

.

where we have used η to stress that we can have any signature of the
metric. We also see that the almost product structure takes the simple
form

I = EaEa − Ea′

Ea′ =

= dxm∂m − dym′

∂m′ ,

so the Nijenhuis tensor vanishes. We also find the two associated boundary
operators to be

d = dxm ∂

∂xm
,

d′ = dym′ ∂

∂ym′
.

(ii) singly foliated ⇔ INI = ±NI .
In this case only one set of vielbeins associated to I defines a foliation
which we will take to be the unprimed set, i.e., INI = NI . The vielbeins
can now be expressed in the form

Ea = Ea
m∂m, Ea′ = Ea′

m′

(∂m′ + Am′

m∂m),

Ea = (dxm − dym′

Am′

m)Em
a, Ea′

= dym′

Em′

a′

,

now additionally Am′
m are functions on M . It is convenient to introduce

objects Dm′ := ∂m′ + Am′
m∂m and Πm := dxm − dym′

Am′
m such that

the vielbeins instead can be written in the simpler form

Ea = Ea
m∂m, Ea′ = Ea′

m′

Dm′

Ea = ΠmEm
a, Ea′

= dym′

Em′

a′

.

Now there will be no surprise that Dm′ in fact will be the covariant deriva-
tive in the example of foliations in principle bundles that we will see later.
The metric takes the form

g = ηabE
aEb + ηa′b′E

a′

Eb′ =

= gmn(x, y)ΠmΠn + g′m′n′(x, y)dym′

dyn′

.

where the non-integrability of the prime distribution makes itself manifest
through the differentials Πm. We find the almost product structure to be
of the form

I = EaEa − Ea′

Ea′ =

= Πm∂m − dym′

Dm′

why the associated Nijenhuis tensor fails to vanish but instead reads

−NIm′n′ = P [Dm′, Dn′ ] =

= ∂m′An′ − ∂n′Am′ + [Am′ , An′ ].
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It thus measures at what extent the prime distribution fails to be inte-
grable. The two associated differential operators become

d = Πm∂m,

d′ = dym′

Dm′ .

Let I define an Ehresmann connection, and thus a fibration. Denote it
by 0 → MF → M → M ′

D
→ 0, where MF is the leaf of the foliation

and M ′
D

= M/MF is the leafspace. Let further σ be a section of the
leafspace in M , then the covariant derivative on the leafspace is simply
D′ = σ∗d = σ∗d′ = d′|σ. The curvature of this covariant derivative is
nothing but the Nijenhuis tensor.

(iii) no foliation ⇔ no condition.
In this case we have no foliation and thus the sets of vielbeins will none
be of a simple form but both needs to be expressed in terms of both ∂m

and ∂m′ . This case will be of no interest to us as we practically get no
extra structure of importance.

4.3.2 The classes defined by the Jordan tensor

We will here proceed to get the extra structure to a riemannian almost prod-
uct structure by looking at the Jordan tensor. If we put everything we have
regarding the Jordan tensor together we end up with the theorem.

Theorem 4.47

Let the triplet (M , g, I) define a riemannian almost product structure, let D, D′

be the associated distributions and let L, L′ be the skew tensors of the deforma-
tion, then the first type of almost product structure corresponding to a doubly
foliated manifold can be seen by the following equivalent statements,

(i) MI = 0,

(ii) K = 0, K ′ = 0,

(iii) ˜̃∇ is metric,

(iv) D, D′ are geodesic.

proof: (i), (ii) and (iv) is clear from proposition 4.30 and definition 3.29, now we
need to prove (iii), that is we need to prove that

g(B(X, Y ), Z)+g(Y, B(X,Z)) =

=
1

4
(g((I∇Y I + ∇IY )(X), Z) + g(Y, (I∇ZI + ∇IZ)(X))) =

= −
1

4
(g(X, (I∇Y I −∇IY )(Z)) + g((I∇ZI −∇IZ)(Y ), X)) =

= −
1

4
g(X, HI(Y, Z) + HI(Z, Y )) =

= −
1

8
g(X, MI(Y, Z)),

and the equivalence is clear. �
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We see that we have a similar structure as in the case for the Nijenhuis tensor.
Now the Jordan tensor measures whether the two complementary distributions
are geodesic or not while the Nijenhuis tensor measured whether they were
integrable. We will soon proceed to split the Jordan tensor further and look at
the traceless and trace parts of it to divide up the classes further, but first we
will look at the special case when the almost product structure I is covariantly
constant, as we will see a typical analogue to the complex case.

Theorem 4.48

Let the 3-tuple (M , g, I) define a riemannian almost product structure with

Levi–Civita connection ∇. Let ∇̃ denote the adapted connection and ˜̃∇ the
Vidal connection then the following equivalence holds

∇I = 0 ⇔ ˜̃∇ = ∇̃ = ∇

proof: Immediate from definitions 4.31 and 4.32. �

The first obvious consequence of this is that the Nijenhuis tensor vanishes.
Note that in the case of a Kähler manifold we know that as the almost complex
structure, J , is covariantly constant, i.e., ∇J = 0, J is also integrable.

Corollary 4.49

Let the 3-tuple (M , g, I) define a riemannian almost product structure and let
∇ be the Levi–Civita connection then

∇I = 0 ⇒ NI = 0

proof: From 4.48 and proposition 4.37. �

We also know from the complex case that Kähler implies reduction of the holon-
omy groups so it is no surprise that we find it in the case of a covariantly constant
almost product structure to.

Corollary 4.50

Let the 3-tuple (M , g, I) define a riemannian almost product structure. If the
adapted connection and the Vidal connection are Levi–Civita then the holonomy
group splits as

O(m) = O(k)×O(k′)

which follows from the splitting of the Lie algebra of the connection

o(m) = o(k)⊕ o(k′)

proof: From proposition 4.37. �
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In the case of a Kähler manifold we know that the holonomy group reduces to
U(m) ⊂ O(2m) where U(m) is a subgroup of the generic holonomy group O(2m)
of a 2m−dimensional manifold, while in the case of the covariantly constant
almost product structure we get the subgroup O(k) × O(m− k) instead of the
generic holonomy group O(m). From what we have seen the case of a covariantly
constant almost product structure tells us that the universal covering space in
fact is a product manifold.

Theorem 4.51

Let the 3-tuple (M , g, I) define a riemannian almost product structure. If now

the Vidal connection ˜̃∇ is Levi–Civita (i.e., metric and torsionless), then M̃ ,
the universal covering space of M , is a product manifold.

proof: From proposition 4.47 plus the fact that it is a topological product from the

vanishing of the Nijenhuis tensor. �

Now we will continue to split the Jordan tensor into its traceless and trace parts
to get the four classes of distributions in the geometric sense, namely geodesic,
umbilic, minimal, and the last with no condition. So as we saw in definition
3.29 we have eight different classes of a distribution and now in the case of a
almost product structure which leaves us with two complementary distributions
we thus get 64 different classes. Now it is immediate that it does not matter
which we call complementary of the two distributions so we have in fact only
36 different classes, see [22].

Proposition 4.52

Let the triplet (M , g, I) be an riemannian almost product structure. We then
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have the following 36 different classes

Classes L W κ L′ W ′ κ′ Name

(GF,GF) x x x x x x Local product
(GF,UF) x x x x x Twisted product
(GF,MF) x x x x x
(GF,F) x x x x

(UF,UF) x x x x Double twisted product
(UF,MF) x x x x
(UF,F) x x x

(MF,MF) x x x x
(MF,F) x x x
(F,F) x x

(GF,GD) x x x x x Riemannian foliation
(UF,GD) x x x x Riemannian foliation
(MF,GD) x x x x Riemannian foliation
(F,GD) x x x Riemannian foliation

(GF,UD) x x x x
(UF,UD) x x x
(MF,UD) x x x
(F,UD) x x

(GF,MD) x x x x
(UF,MD) x x x
(MF,MD) x x x
(F,MD) x x
(GF,D) x x x
(UF,D) x x
(MF,D) x x
(F,D) x

(GD,GD) x x x x
(GD,UD) x x x
(GD,MD) x x x
(GD,D) x x

(UD,UD) x x
(UD,MD) x x
(UD,D) x

(MD,MD) x x
(MD,D) x
(D,D)

The structure added to the various tensors in some of the different classes will
be put as a proposition. Again the proof is immediate.

Proposition 4.53

Let the triplet (M , g, I) define a riemannian almost product structure, let the
Nijenhuis tensor define the three different types of almost product structures as
in 4.46, then we have additionally the following examples of classes in various
types
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(i) doubly foliated ⇔ NI = 0.
In this type we have 10 different classes as seen in proposition 4.52. We
will take a closer look at the local structure of the metric in some of these
classes.

(GF, GF ) : g =gmn(x)dxmdxn + g′m′n′(y)dym′

dyn′

(GF, UF ) : g =gmn(x)dxmdxn + λ′(x, y)g′m′n′(y)dym′

dyn′

(UF, UF ) : g =λ(x, y)gmn(x)dxmdxn + λ′(x, y)g′m′n′(y)dym′

dyn′

These are the classes referred to as local product, twisted product

and doubly twisted product respectively. In all these cases we know
that W = 0, W ′ = 0, but in the cases where we have twisted products the
mean curvature does not vanish. In fact we have

(GF, UF ) : κ =0 , κ′ =−
k′

2
λ′−1

dλ′(x, y),

(UF, UF ) : κ =−
k

2
λ
−1d′λ(x, y), κ′ =−

k′

2
λ′−1

dλ′(x, y).

These two classes are called warped product and doubly warped

product respectively when the conformal factors λ, λ′ only depends on
the coordinates ym′

, xm respectively. This gives us

(GF, UF ) : g =gmn(x)dxmdxn + λ′(x)g′m′n′(y)dym′

dyn′

,

(UF, UF ) : g =λ(y)gmn(x)dxmdxn + λ′(x)g′m′n′(y)dym′

dyn′

,

and the mean curvatures now become basic 1-forms and take the form

(GF, UF ) : κ =0, κ′ =−
k′

2
λ′−1

dλ′(x),

(UF, UF ) : κ =−
k

2
λ
−1d′λ(y), κ′ =−

k′

2
λ′−1

dλ′(x).

We will later see that this case is the interesting case of the present brane
solutions in M-theory.

(ii) singly foliated ⇔ INI = ±NI .
As in 4.46 we will look at the case where INI = NI and find that some
structure is inherited from the doubly foliated case. Of this type we have
16 classes of which we will list some examples.

(F, GD) : g =gmn(x, y)ΠmΠn + g′m′n′(y)dym′

dyn′

,

(F, UD) : g =gmn(x, y)ΠmΠn + λ(x, y)g′m′n′(y)dym′

dyn′

.

The first of these are called riemannian foliations which are charac-
terized by the complementary distribution being geodesic. Or to put it
in the classification scheme, (∗F, GD). In this case the metric g is said
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to be bundle-like and we have LXg′ = 0. So the vectors of the foliation
are isometries of the complementary metric, g′. In the second case we see
that we get a non-vanishing mean curvature form for the complementary
distribution

κ′
m = −

k′

2
λ′−1

∂mλ′.

If we now let the foliation be geodesic we get

(GF, GD) : g =gmn(x)ΠmΠn + g′m′n′(y)dym′

dyn′

,

(GF, UD) : g =gmn(x)ΠmΠn + λ(x, y)g′m′n′(y)dym′

dyn′

,

where additionally Am′
a = Am′

a(y), Ca(bc) = 0. This is the case where
the leaves of the foliation are a Lie group for instance. We will later see
that a principal bundle lies in the first of these classes. Furthermore, we
could let the foliation become umbilic and get an analogue of the type one
case, but we will restrict to the case where the metric takes the form

(UF, GD) : g =λ(y)gmn(x)ΠmΠn + g′m′n′(y)dym′

dyn′

.

We will see that in Kaluza–Klein theory this is the case when introducing
the scalar field λ = e−2φ which measures the radius of the gauge group.
Here we get

κm′ = −
k

2
λ
−1∂m′λ = k∂m′φ.

(iii) no foliation ⇔ no condition. As this case is rather uninteresting we will
only say that in the case of a geodesic distribution the extrinsic curvature
vanishes which can be viewed in the form

(GD) : Kabc′ = Cc′(ab) = 0.

We can now use this formalism to study the structure of for instance the brane
solutions of M-theory. The following example tells how the different tensors
look and what they say.

Example 4.54

M2-brane

In the M2-brane case we have the solution to the equations of motion for the
metric in the form [3, 10]

g = ∆
−2

3 (y)ηmndxmdxn + ∆
1
3 (y)δm′n′dym′

dyn′

where

∆(y) = 1 + (
a

ρ(y)
)6, ρ(y) =

√

δm′n′ym′yn′ .
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and ρ = 0 is the horizon of the brane not the core. We find the corresponding
vielbeins

Ea =∆
−1

3 δa
m∂m, Ea′ =∆

1
6 δa′

m′

∂m′ ,

Ea =∆
1
3 dxmδm

a, Ea′

=∆
−1

6 dym′

δm′

a′

,

which we use to derive the almost product structure which splits the tangent
bundle accordingly

I = EaEa − Ea′

Ea′ =

= dxm∂m − dym′

∂m′ .

By definition, I2 = 1, and we see that not only the brane is integrable but also
the complementary distribution associated with I . Accordingly the Nijenhuis
tensor vanishes,

NI = 0.

So we see that this typical solution is a doubly foliated manifold in the class
(UF,GF) and additionally it is spherical why the metric is nothing but a
warped-product. We get the mean curvature

κ = ∆
−1d′∆,

and as W vanishes we see that generating translations radially from the brane
by the vector ∂/∂ρ we generate conformal transformations on the brane.

M5-brane

In the M5-brane case we will look at two types of solutions, the first one of
which is the ordinary with no field excitations on the brane [14, 10], the second
where we have excited the anti self-dual tensor field on the brane found recently
[7]. The first solution of the metric looks like

g = ∆
−1

3 (y)ηmndxmdxn + ∆
2
3 (y)δm′n′dym′

dyn′

where

∆(y) = 1 + (
a

ρ(y)
)3, ρ(y) =

√

δm′n′ym′yn′ .

The metric and thus the vielbeins look very similar to the M2-brane case

Ea =∆
−1

6 δa
m∂m, Ea′ =∆

1
3 δa′

m′

∂m′ ,

Ea =∆
1
6 dxmδm

a, Ea′

=∆
−1

3 dym′

δm′

a′

,

Again we get I = dxm∂m − dym′

∂m′ and NI = 0 but now of course with a
different number of x and y directions. So we see also in this case that we have
a doubly foliated solution of the type (UF, GF ). Notable is that this implies
that the antisymmetric tensor fields which where a basic form now lies in the
graded cohomology group

H ∈ H0,4.

The mean curvature is the same as in the M2-brane case

κ = ∆
−1d′∆,
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but now with a different function ∆ of course. In the other solution with the
tensor field excited the metric looks like

g = (∆+∆−)
−1/6

[

(

∆+

∆−

)1/2

dx2
− +

(

∆−

∆+

)1/2

dx2
+

]

+ (∆+∆−)1/3dy2

where ∆+ = ∆ + ν,∆− = ∆− ν and ∆ is as before. Here we have yet another
almost product structure lying in the brane denoted q which squares to one. In
this case we find that W does not vanish anymore but will in fact be

♭W =
1

4
(

1

∆+
−

1

∆−
)♭qd′∆

and the mean curvature will read

κ =
1

2
(

1

∆+
+

1

∆−
)d′∆

so we see that we have a solution in the class (F, GF ). Interesting to see is that

the new almost product structure in the brane, q, defines three new preferred

directions which in some sense can be seen as a membrane, see [7] for further

information. Here we just state the utmost importance in studying several

almost product structures on a manifold as these would result in multi brane

configurations. Interesting would be to see what conditions would be implied on

these almost product structure if we furthermore require that these associated

brane configurations would solve the equations of motions.

Now as we said earlier the structure of the Nijenhuis tensor took such a form
that we suspected that it measured the curvature of fibrations. It will be clear
from the next example, where we look at principal bundles, that this is truly
a fact. We will also see that Nijenhuis tensor measures the field strength in
Kaluza–Klein theories.

Example 4.55

Let P (M , G) be a principal bundle with base space M and fiber G. Let
furthermore d denote the exterior derivative in the total space, Ta denote the
generators of the Lie algebra g associated to the Lie group G, fulfilling the
algebra [Ta, Tb] = fab

cTc and normalized like tr(TaTb) = δab. The vielbeins can
be expressed as

EaTa =g
−1dg + g

−1Ag, Ea′

=dym′

Em′

a′

,

Ea =Ra, Ea′ =Ea′

m′

(∂m′ − Am′

aRa)

where g
−1dg(La) = Ta, g

−1dg(Ra) = Ad
g−1Ta and Ra and La are the right

and left invariant vector fields on G respectively. Here we have done the split
TuP = VuP ⊕ HuP where the vertical subbundle is spanned by Ea and the
horizontal by Ea′ . We define the connection ω := EaTa [13, 17] and write the
Lie algebra valued curvature form as

Ω := dω + ω ∧ ω

We now know [21] that taken two vectors X, Y ∈ TP we get

Ω(X, Y ) = −ω([XH , YH ]).
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This tells us that if we expand the connection to ω̃(g, y) := lg∗ω = EaLa now
giving ω̃(X) = XV instead of pushing the vector back to the Lie algebra we see
that, defining ω̃′ := 1P − w̃ and I = ω̃− ω̃′ = 2ω̃ − 1P , we get from lemma 4.26

Ω̃(X, Y ) =
1

4
NI(X, Y )

or 1
4
ω(NI(X, Y )) = Ω(X, Y ). So we see that indeed the field strength of gauge

theory is a special case of the Nijenhuis tensor only valid when the fiber is a
gauge group. We can also easily see that this is nothing but a foliation of class
(GF,GD). This due to the fact that by definition we have HugP = rg∗HuP

which implies that A = A(y) implying GF and Ea′

m′

= Ea′

m′

(y) implying
GD.

In the case of algebraic gauge [18] we have the short exact sequence 0 → A →i

E →π B → 0 where A is the fiber E the total space and B the base manifold
all being algebras. We have a connection on B denoted ρ such that

ρ : B 7−→ E, π ◦ ρ = 1B .

Equivalently we can look at a connection in E instead and denote it by ω now
satisfying

ω : E 7−→ A, ω ◦ i = 1A.

We have the immediate relation between the two connections

ω = 1E − ρ ◦ π

satisfying ω2 = ω. The curvature of these two connections are defined for
X, Y ∈ Λ1

B and X, Y ∈ Λ1
E by

F (X, Y ) := ρ([X, Y ]) − [ρ(X), ρ(Y )],

Ω(X, Y ) := F (πX, πY ).

Now let ω′ = 1E − ω = ρ ◦ π and I = ω − ω′ = 1E − 2ρ ◦ π then the curvature
Ω is nothing but the Nijenhuis tensor or

Ω(X, Y ) =
1

4
NI(X, Y )

which follows directly when expressing Ω in terms of ω, see [18].

Next example will be that of Kaluza-Klein theory.

Example 4.56

We can extend the above example to the case of Kaluza–Klein theory where
the fiber needs not be the gauge group itself but rather having the gauge group
as isometry group [12]. Again we split the space as a fibration looking first at
the (GF, GD) case. Let M denote the total space and M the base space. Let

furthermore H denote the fiber which and let (xm, ym′

) be local coordinates
such that {∂m} spans the foliation, H , locally and thus write our adapted
frames

Êa = Ea
m∂m, Êa′ = Ea′

m′

∂m′ + Aa′

m∂m

55



Let Ki be the set of Killing vectors of the fiber fulfilling the algebra

[Ki, Kj ] = fij
kKk

where of course Ki = Ki
a(x)Ea, so we can express A = Ea′

Ai
a′Ki. We also

require that Ai = Ai(y) and that fi(jk)=0 (see proposition 4.53). The inverse
vielbeins now read

Êa = Ea − AiKa
i , Êa′

= Ea′

,

from which we derive the metric of the total space

g =g + g′ = ηabÊ
aÊb + ηa′b′ Ê

a′

Êb′ =

=ηab(E
a − AiKa

i )(Eb − AjKb
j ) + ηa′b′E

a′

Eb′ .

We also use the set of vielbeins to form the almost product structure which
splits the space according to the fibration. As it is a fibration this almost
product structure can be seen as an Ehresmann connection on M .

I = ÊaÊa − Êa′

Êa′ = EaEa − Ea′

Ea′ − 2AiKi

Of course I2 = 1, and if X, Y ∈ Λ1 we have from lemma 4.26

−NI(X, Y ) = P [P ′X,P ′Y ].

Let Êm′ = ∂m′ + Ai
m′Ki =: Dm′ and note that PKi = Ki then we again see

that the Nijenhuis tensor measures the curvature

−NIm′n′ =P [Êm′ , Ên′ ] =

=P [∂m′ + Ai
m′Ki, ∂n′ + Aj

n′Kj ] =

=(∂m′Ai
n′ − ∂n′Ai

m′ + fjk
iAj

m′A
k
n′)Ki =

=F i
m′n′Ki.

From this analysis it is clear that we can extend this fibration to any case in the
classification scheme, i.e., (∗F, ∗D), where ∗ means G, U, M or nothing. So for
example we can extend the theory to the (UF, GD) case where we have added
one additional factor which can conformally transform the fiber as we move
along the base space. So by letting φ = φ(y) be a scalar field, often referred to
as the dilaton, and rescale the vielbein as

Ẽa := e−φÊa

then the mean curvature becomes

κm′ = −
1

2
kλ

−1∂m′λ = k∂m′φ,

telling us that the fiber now is umbilic instead or that movement on the base

space generates conformal transformations on the fiber. The dilaton can now

be seen as measuring the radius of the fiber. We could of course go further

by relaxing the conditions on the foliation and the complementary distribution

further. Notable is that if we want to relax the condition on the fiber further we

will break some of the isometries so the Killing vector algebra will reduce. We

also note that any further relaxation of these kinds will not alter the Nijenhuis

tensor and thus not the gauge field strength either.
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5 Conclusions and outlook

We have demonstrated that we can express gauge theory, Kaluza–Klein theory
and brane theory as special cases of almost product manifolds. We have also
seen that the Nijenhuis tensor of certain almost product structures measures
integrability which in gauge theories and Kaluza–Klein theories implies that the
field strength measures the non-integrability of the complementary distribution
to the foliation associated with the fiber (as we found them to be equal). Now
there are lots of things that could be investigated further, one is how this almost
product structure appears in the Clifford algebra. Another thing is to generalize
all this to superspace, as we know from the embedding formalism [16, 2, 1] that
a simple constraint gives us the right multiplets and brings us on shell. In a
forthcoming paper [15], we will show how flat superspace can be seen in this
formalism. But the most interesting continuation would of course be to find new
solutions that are non trivial and maybe even show the existence of solutions in
which the leafspace is non-commutative.

Acknowledgments: The author would like to thank Martin Cederwall for all
help he has given with this paper and also Niclas Sandström for discussions.
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[19] P.W. Michor. Remarks on the Fröhlicher-Nijenhuis bracket. Proc. of Dif-

ferential Geometry and its Applications, Brno, 1986.

[20] P.W. Michor. Remarks on the Schouten-Nijenhuis bracket. Rend. Circolo

Matematico di Palermo Suppl., ser.II 16, 1987.

[21] M. Nakahara. Geometry, Topology and Physics. Institute of physics pub-
lishing, 1990.

[22] A.M. Naviera. A classification of riemannian almost-product manifolds.
Rendiconti di Mat. di Roma, 1984.

[23] V. Rovenski. Foliations on riemannian manifolds and submanifolds.
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1 Introduction

In modern day theoretical physics one often deals with additional dimensions
besides the ordinary four space-time ones. These extra dimensions manifest
themselves in different forms. In gauge theory they appear as the dimension
of the gauge group, in M-theory and string theory, they are required for self-
consistency. In Kaluza–Klein theory, the gauge theory is obtained by compact-
ification over an internal manifold with an isometry group which equals the
gauge group. The almost product structure concept makes possible a geomet-
rical formulation which completely describe these theories, without performing
the dimensional reduction. This leads to new insights in their geometrical prop-
erties which is unobtainable in the dimensionally reduced theories themselves.
For instance in ref. [1] it was shown that the Nijenhuis tensor of a certain
almost product structure measures the fieldstrength which in the geometrical
language is a measure of the non-integrability of the base manifold of the prin-
cipal bundle. In almost product manifolds, three different connections appear
naturally. As is known the Gauss–Codazzi relations connect curvature compo-
nents of these connections. In this paper a classification of the relations of all
curvature components is given which yields a number of new identities. As a
result it becomes manifest that the Vidal connection in a principal bundle, or
Kaluza–Klein theory, reduces to the gauge-covariant derivative. Since a lot of
recent work [2, 3] has been made concerning rotating branes which are solu-
tions to various supergravity theories, it will here be stressed that the almost
product manifold vievpoint would be the most geometrical approach to these
problems. Direct relations for the Ricci tensors in terms of the characteristic
deformation tensors of an almost product structure will be given. These will
then be the most natural starting point when making ansätze for new solutions
in the supergravity theories.

In the generic case, the Vidal connection will not be metric neither torsion
free, and in section 2 we give a review of the theory of general connections.
We refer to [4] for a more detailed treatise in this respect. In section 2 the
properties of an arbitrary connection under conformal transformations are also
reviewed. Section 3 gives a quick introduction to the basic connections and
tensors involved with almost product manifolds. The naturally occuring con-
nections, besides the Levi–Civita one, is the Vidal and adapted connections.
All tensors formed from these connections are investigated in section 4. In that
section several new identities are derived, some of which follows directly from
the work in ref. [5], and the conformal properties are studied. In section 5 this
is brought to full fruition when the Vidal connection is shown to be identical to
the gauge-covariant derivative in gauge or Kaluza–Klein theory. Possible further
developments in this area is discussed in section 6.

2 A review on general connections

This section consists of two parts, the first of which treats a general non-metric
connection and its curvature relations together with the Bianchi identities. The
second part deals with the induced transformation of an arbitrary connection
under conformal transformations.
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2.1 Non-metric connections

The most frequently used non-Levi-Civita connections are the ones in which the
torsion content is non-zero. In the case of a Vidal connection, the connection
will not in general be metric nor symmetric. Also in the case of embeddings
one might encounter non-metric connections while studying cases with an aux-
illiary metric on the world-volume. In this subsection a thorough description of
connections in the most general case is given. See also ref. [4]. To this end, the
following two important tensor are defined as,

Definition 2.1

Let ∇ be a connection in a manifold M with non-degenerate metric g. Now
define the torsion tensor, T , and the non-metricity tensor, Q, respectively with
characteristics,

T : Λ1 × Λ1 7−→ Λ1

Q : Λ1 × Λ1 × Λ1 7−→ R

by the following equations

T (X, Y ) := ∇XY −∇Y X − [X, Y ]

Q(X, Y, Z) := (∇Xg)(Y, Z)

where X, Y, Z ∈ Λ1 are vectorfields on M .

A general connection on a manifold with non-degenerate metric can be decom-
posed into the Levi-Civita connection and an arbitrary (2, 1)-tensor. The di-
mension of this tensor is therefore m3 where m is the dimension of the manifold
M . Below it is shown that it can be decomposed into one part containing only
the torsion tensor, T , and one part containing only the non-metricity tensor, Q.
These two tensors have the dimensions 1

2m2(m−1) and 1
2m2(m+1) respectively

which together give m3. The torsion do not appear directly in the connection
but as the contorsion and that is also the case with the non-metricity tensor.
The following notation will be used in what follows,

♭T (X, Y, Z) := g(T (X, Y ), Z)

In the next proposition the contorsion and con-metricity tensors are defined.

Definition 2.2

Let ∇ be a connection in a manifold M with non-degenerate metric g. Define
the contorsion tensor, S, and the con-metricity tensor, P , respectively, with
same characteristics,

S, P : Λ1 × Λ1 × Λ1 7−→ R

by following equations

♭S(X, Y, Z) :=
1

2
(♭T (X, Y, Z)− ♭T (Y, Z, X) + ♭T (Z, X, Y ))

♭P (X, Y, Z) :=
1

2
(−Q(X, Y, Z) − Q(Y, Z, X) + Q(Z, X, Y ))

where X, Y, Z ∈ Λ1 are vectorfields on M and S(X, Y ) = g−1(♭S(X, Y, ·)), P (X, Y ) =
g−1(♭P (X, Y, ·)).
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Now, any connection can be expressed in terms of the Levi Civita connection
with respect to a non-degenerate metric, denoted by g∇, plus the contorsion and
the con-metricity tensors defined above, i.e,

Proposition 2.3

Let ∇ be an arbitrary connection on a manifold M , let further g be a non-
degenerate metric on M and g∇ corresponding Levi-Civita connection. Let
S, P be the tensors defined in 2.2 .Then

∇XY = g∇XY + S(X, Y ) + P (X, Y )

The curvature tensor of an arbitrary connection, is defined by,

R(X, Y )Z := [∇X ,∇Y ]Z −∇[X,Y ]Z, (1)

will no longer take values in the lie algebra o(m) as does the curvature tensor of
the Levi-Civita connection, but (will in the generic case take values) in gl(m).
The identities of the curvature tensor will therefor be altered, and its irreducible
parts look in the generic case like

⊗ ⊗ = ⊕ ⊕ ⊕ ⊕ . (2)

Proposition 2.4

The four identities of the Riemann curvature tensor of an arbitrary connection
are

(i) R(ab)c
d =0

(ii) R[abc]
d =∇[aTbc]

d − T[ab
eTc]e

d

(iii) Rab(cd) = − (∇[aQ)b]cd −
1

2
Tab

eQecd

(iv) Rabcd − Rcdab =
3

2
(R[abc]d + R[bcd]a − R[cda]b − R[dab]c) +

+ Rab(cd) − Rbc(da) − Rcd(ab) + Rda(bc) + Rac(db) − Rdb(ac)

By the skew-tableaux (the two tableaux on the right in equation (2) above) it
is stressed that these two irreducible parts will vanish when the connection is
metric, i.e, the right hand side of identity 3 vanishes. In the generic case there
are two possible contractions that can be made.

Definition 2.5

Let ∇ be an arbitrary connection on a manifold M with curvature tensor, R.
From the curvature it is possible to construct two types of (2, 0) tensors by
contraction, namely,

Rab := Racb
c,

Vab := Rabc
c.
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The first one is the generalized Ricci tensor and the second one will here be
refered to as the Schouten two-form.

The identities of the Ricci and Schouten tensors can be read off directly from
the original curvature identities.

Proposition 2.6

Let Rab be the Ricci tensor and Vab the Schouten tensor of an arbitrary con-
nection, ∇, then the second and third curvature identities implythe relations,

2R[ab] = Vab −∇cTab
c − 2∇[aTb] − Tab

cTc,

Vab = −(∇[aQ)b] −
1

2
Tab

cQc

The only integrability conditions to the curvature identities are the Bianchi
identities.

Proposition 2.7

Let ∇ be an arbitrary connection with curvature tensor R, and torsion tensor
T . Then the Bianchi identity reads

∇[aRbc]d
e = T[ab

fRc]fd
e

from which the identities involving the Ricci tensor Rab, and the Schouten two-
form V , are derived,

2∇[aRb]c + Tab
dRdc = ∇dRabc

d − 2Td[a
eRb]ec

d

dV = 0

2.2 Conformal transformations

Below, conformal transformations in the case of an arbitrary connection are
studied. There will be some changes compared to the ordinary Levi Civita case
when the connection involves torsion and non-metricity.

Definition 2.8

Let M be a manifold with metric g, let further ∇ be an arbitrary connec-

tion on M . Let cg := e2φg denote a conformal transformation then define the
conformal tensor, denoted by C , with characteristics

C : Λ1 × Λ1 7−→ Λ1,

by

C (X, Y ) := c∇XY −∇XY

where X, Y ∈ Λ1 are vectorfields on M .

By a straight forward calculation one ends up with the transformations of the
characteristic tensors of a connection under conformal transformation.
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Proposition 2.9

Let M be a manifold with metric g and ∇ be an arbitrary connection on M .
Let R, T, Q denote the Riemann, torsion and non-metricity tensors respectively.
Then their transformations under a conformal transformation can be expressed
in terms of the conformal tensor, C , as

cR(X, Y )Z − R(X, Y )Z =(∇XC )(Y, Z) − (∇Y C )(X, Z) +

+ C (X, C (Y, Z)) − C (Y, C (X, Z)) + C (T (X, Y ), Z),
cT (X, Y ) − T (X, Y ) =C (X, Y ) − C (Y, X),

cQ(X, Y, Z) − e2φQ(X, Y, Z) =e2φ[2X [φ]g(Y, Z)− g(C (X, Y ), Z) − g(Y, C (X, Z))]

In the case of the Levi-Civita connection the conformal tensor is most easily
extracted from the above proposition.

Proposition 2.10

Let g∇ be the Levi-Civita connection on a manifold with non-degenerate metric
g, then its conformal tensor, denoted by gC , reads

g
C (X, Y ) = X [φ]Y + Y [φ]X − g(X, Y )♯dφ

From these two propositions the conformal tensor in the generic case can be
derived.

Proposition 2.11

Let ∇ be an arbitrary connection on a manifold M with non-degenerate metric
g, let further S, P denote the contorsion and the con-metricity tensor respec-
tively. Then the conformal tensor of ∇ reads

C (X, Y ) = g
C (X, Y ) + cS(X, Y ) − S(X, Y ) + cP (X, Y ) − P (X, Y )

3 The connections associated with an almost prod-

uct structure

Here a quick review on the concepts of almost product structures will be given,
for a more thorough treatise see refs. [1, 6].

Notation 3.1

We will denote the objects on our space with an underline, i.e.,

M Manifold

TM Tangent bundle of M

T ∗
M Cotangent bundle of M

g Metric on M

d Exterior derivative

X Vector field on M
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to list the primarily used objects. We will use this underlining principle for all
objects on M whenever there may be risk of confusion.

Definition 3.2

Let I be an almost product structure on a manifold M with riemannian metric
g and let X, Y ∈ TM be vector fields. Then the triplet (M , g, I) is called
an riemannian almost product structure or simply an almost product

manifold if

g(IX, IY ) = g(X, Y )

or in other words, I is a automorphism of g in the sense that the following
diagram commutes:

TM

g

��

I
// TM

g

��

T ∗M
It

// T ∗M

i.e.,

It ◦ g ◦ I = g

Proposition 3.3

Let the triplet (M , g, I) define a riemannian almost product structure on M

with dimM = m, then

(i). I2 = 1

(ii). All eigenvalues are ±1.

(iii). trI = 2k − m, where k is the number of positive eigenvalues.

(iv). I ∈ Gr(k, m) ≡ O(m)/(O(k) × O(m − k)).

(v). There is a preferred base called the oriented base in which I is diagonal
and ordered, i.e., it takes the form

I =





















1
. . .

1
−1

. . .
−1





















The almost product structure will serve as a rigging of the tangentbundle by
looking at the spaces of eigenvectors to the almost product structure.

6



Definition 3.4

Let I be an almost product structure on M , then I defines two natural distri-
butions of TM , denoted D and D

′ respectively, in the following way. Let

Dx := {X ∈ TxM : IX = X},

D
′
x := {X ∈ TxM : IX =−X},

then

D :=
⋃

x∈M

Dx, D
′ :=

⋃

x∈M

D
′
x.

Seen as an endomorphism of the tangent bundle two projection operators can
be formed from the almost product structure as it squares to one. These will
now be projective mappings from the tangent bundle to these two sub-bundles
defined above.

Definition 3.5

From an almost product structure I on a manifold M we can define two pro-
jection operators through

P :=
1

2
(1 + I)

P ′ :=
1

2
(1 − I).

These will be mappings in the sense P : TM → D and P ′ : TM → D
′ respec-

tively.

The Riemann metric in the triplet of a almost product manifold will now split
into two parts which will be the induced metrics on these two sub-bundles of
the tangent bundle.

Definition 3.6

Let M be a riemannian or pseudo-riemannian manifold with metric, g, I a
reflective structure with P and P ′ the corresponding projectors, then define the
two associated metrics with respect to the reflective structure by

g(X, Y ) := g(PX,PY ), g′(X, Y ) := g(P ′X,P ′Y )

which implies that g splits into these two parts, i.e.,

g = g + g′.

3.1 Tensors associated with an almost product structure

There is one main tensor in the context of almost product manifolds and that
is the deformation tensor. This tensor is most suitably decomposed into two
irreducible parts namely the Nijenhuis tensor and the Jordan tensor.
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Definition 3.7

Let the triplet (M , g, I) define a riemannian almost product structure and define
the Nijenhuis tensor as the measure of how much dI fails to be a coboundary
operator. The Nijenhuis tensor is thus a (2,1) tensor. Let X, Y ∈ Λ1 be vector
fields on M , then the characteristics of the Nijenhuis tensor are

NI(X, Y ) : Λ1 × Λ1 7−→ Λ1

and we define it through the quadratic action of dI on functions f ∈ C∞(M ),

< −NI(X, Y ), df >:= dIdIf(X, Y ).

It follows that the Nijenhuis tensor measures the failure in closure of the oper-
ator dI and can thus be considered as a kind of torsion. Alternatively, as the
equivalent definition below shows, it measures the curvature of the endomor-
phism, i.e.,

NI [X, Y ] := I([X, Y ]I) − [I(X), I(Y )]

Alternatively the Nijenhuis tensor can be seen as measuring how far this endo-
morphism is from being a Lie algebra homomorphism of the infinite-dimensional
Lie algebra of vector fields on M .

Definition 3.8

Let the triplet (M , g, I) define a riemannian almost product structure, and let
{·, ·} be the Jordan bracket. The Jordan tensor associated to I, denoted MI ,
with the following characteristics:

MI : Λ1 × Λ1 7−→ Λ1

is defined by,

MI(X, Y ) := I{X, Y }I − {IX, IY }

where X, Y ∈ Λ1 are vector fields on M . The analogy to the Nijenhuis tensor
is obvious .

Both the Nijenhuis and the Jordan tenor can be expressed entirely in terms of
the covariant derivative of the almost product structure.

Definition 3.9

Let the triplet (M , g, I) define a riemannian almost product structure. Let ∇
be the Levi–Civita connection on M and define the deformation tensor asso-
ciated with the endomorphism I, denoted HI , with the following characteristics:

HI : Λ1 × Λ1 7−→ Λ1

HI is defined by the expression

HI(X, Y ) := (I∇XI −∇IXI)(Y ),

where X, Y ∈ Λ1 are two vector fields on M . An equivalent definition is given
by,

HI(X, Y ) := NI(X, Y ) + MI(X, Y ).
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Looking at the characteristic tensors of a distribution the deformation tensor
of an almost product structure can now be decomposed into the deformation
tensors of the two complementary distributions defined by the almost product
structure.

Definition 3.10

Let D be a k-distribution with projection P on a riemannian manifold M with
non-degenerate metric g. Let ∇ be the Levi–Civita connection with respect
to this metric and let P ′ := 1 − P be the coprojection of D. Now define the
following tensors with characteristics

H, L, K : Λ1
D × Λ1

D 7−→ Λ1
D′

κ : Λ1
D′ 7−→ R

and

(i) H(X, Y ) := P ′∇PXPY deformation tensor,

(ii) L(X, Y ) :=
1

2
(H(X, Y ) − H(Y, X)) twisting tensor,

(iii) K(X, Y ) :=
1

2
(H(X, Y ) + H(Y, X)) extrinsic curvature tensor,

(iv) ♯κ := trH mean curvature tensor,

(v) W (X, Y ) := K(X, Y ) −
1

k
♯κg(X, Y ) conformation tensor.

This gives us the decomposition of the deformation tensor in its anti-symmetric,
symmetric-traceless and trace parts accordingly,

H = L + W +
1

k
♯κg.

The extrinsic curvature tensor and the twisting tensor can be written in a more
elegant fashion.

Proposition 3.11

Let D be a distribution on a manifold M with metric g, let further g(X, Y ) =
g(PX,PY ) be the induced metric on the distribution, then the symmetric part
of the deformation tensor can be written like

K(X, Y )(ϕ) =−
1

2
L♯ϕ′g(X, Y ), or ♭K(X, Y, Z) =−

1

2
LZ′g(X, Y ),

where the prime denotes projection along the normal directions by P ′. The
relation for the anti-symmetric part on the other hand is

L(X, Y ) =
1

2
P ′[PX,PY ]

The conformal properties of the irreducible parts of the deformation tensor can
be found in next proposition.
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Proposition 3.12

Let M be a riemannian manifold with metric g, let I be an almost product

structure on M which split the metric in g = g + g′ and let λ = e2φ be a
conformal transformation on g, i.e., cg = λg then the symmetric parts of the
deformation tensor will transform like

cK(ϕ) = K(ϕ) −
1

2
λ
−1♯ϕ′[λ]g = K(ϕ) − ♯ϕ[φ]g

cκ(X) = κ(X) −
1

2
kλ

−1X ′[λ] = κ(X) − kX ′[φ]

cW = W
cL = L

Now denoting the deformation tensor of the complementary distribution D
′ by

H ′ and its irreducible parts by L′, K ′, κ′, W ′ respectively we can express the
Nijenhuis tensor and the Jordan tensor in terms of these characteristic tensors.

Lemma 3.13

Let I be an almost product structure on a manifold M and let its associated

projection operators be P := 1
2 (1 + I), P ′ := 1

2 (1 − I), then

(i) NP =NP′

(ii) NI =4NP

(iii)
1

2
[P ,P ′] =NP

(iv) NP(X, Y ) = − P ′[PX,PY ] − P [P ′X,P ′Y ]

Proposition 3.14

Let the triplet (M , g, I) define an riemannian almost product structure and let
L, L′ be the twisting tensors of the distributions defined by I. Then

1

8
NI = −L − L′

Lemma 3.15

Let I be an almost product structure on a manifold M and let its associated

projection operators be P := 1
2 (1+ I), P ′ := 1

2 (1− I). Let M denote the Jordan
tensor, then

(i) MP =MP′

(ii) MI =4MP

(iii)
1

2
{P ,P ′} =MP

(iv) MP(X, Y ) = − P ′{PX,PY } − P{P ′X,P ′Y }
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Proposition 3.16

Let the triplet (M , g, I) define a riemannian almost product structure, K, K ′

be the extrinsic curvature tensors of the distributions defined by I, then

1

8
MI = −K − K ′

3.2 Three relevant connections

In a almost product manifold there are three different connections of importance,
which will be defined in this subsection. The first is of course the Levi–Civita
connection, from which the other two will be defined by simply adding a tensor
to it. These will be refered to as the adapted and the Vidal connection. Their
basic feature is that they commute with the almost product structure which
means that they respect the rigging of the tangent space defined by the almost
product structure. The additional feature of the adapted connection is that it
is metric which together with the above feature implies that it respects the in-
duced metrics on the two characteristic distributions associated with the almost
product structure. The Vidal connection which is metric iff the characteristic
distributions are geodesic will play an important role when looking at gauge
theories and fiber bundles since they need no metric in the total space and are
of the type (GF, GD). By adding the group metric to the fiber we can construct
an almost product manifold in which the Vidal connection will reduce to the
gauge covariant derivative. This will be explicitly done in section 5. The curva-
ture components of the Vidal connections lying entirely in the tensor algebra of
the characteristic distributions, also called the semi-basic parts, will in a more
natural way measure the curvature in the respective distributions. This is due
to the fact that it does not depend on the connections in its co-parts. What
this means explicitly will become clear when the relations are derived.

Definition 3.17

Let M be a riemannian or pseudo-riemannian manifold with non-degenerate
metric g and corresponding Levi–Civita connection ∇. Let I define distribu-
tions as in definition 3.4. Then the following two definitions of the adapted

connection are equivalent

(i). ∇̃XY := ∇XY + A(X, Y ), A(X, Y ) := 1
2I∇XI(Y )

(ii). ∇̃XY := P∇XPY + P ′∇XP ′Y

Definition 3.18

Let M be a riemannian or pseudo-riemannian manifold with non-degenerate
metric g and corresponding Levi–Civita connection ∇, let I define a foliation.
Then the Vidal connection is defined by

˜̃∇XY := ∇̃XY + B(X, Y ), B(X, Y ) :=
1

4
(∇IY I + I∇Y I)(X).
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Proposition 3.19

Let X, Y be vectorfields on an almost product manifold (M , g, I), let X =
PX, X ′ = P ′X and similar for Y . Then the Vidal connection can be written

˜̃∇XY =

(

P∇XY P ′[X, Y ′]
P [X ′, Y ] P ′∇X′Y ′

)

The two recently introduced tensors, A and B, are in fact related.

Proposition 3.20

Let B be the tensor defined in 3.18 and A the tensor defined in 3.17, then it is
possible express the tensor B in terms of A and the almost product structure I
as

B(X, Y ) =
1

2
(A(Y, X) − A(IY, IX)) .

The most important property of the two connections defined above, is that they
both commute with the almost product structure.

Proposition 3.21

Let ∇̃ denote the adapted connection defined in 3.17 and ˜̃∇ the Vidal connection
defined in 3.18, then their principal feature is that they both commute with the
almost product structure I, i.e.,

∇̃XI = ˜̃∇XI = 0

Only one of them though will, in the generic case, be metric and that is the
adapted connection.

Proposition 3.22

Let the triplet (M , g, I) be a riemannian almost product structure on M and

∇̃ the adapted connection defined in 3.17, then this connection is metric with
respect to the splitting of g according to 3.6, i.e.,

∇̃g = 0

∇̃g′ = 0

The connection components takes a most pleasant form in the oriented basis.
The notation,

E ā = (Ea, Ea′)

will be used, where unprimed(primed) index denotes the basis of the character-
istic unprimed(primed) distribution.
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Proposition 3.23

Let the triplet (M , g, I) define a riemannian almost product structure, let ω,

ω̃ and ˜̃ω denote the connection one-forms of the Levi–Civita connection, the
adapted connection and the Vidal connection respectively. Let furthermore
H, H ′ denote the deformation tensors with respect to I and C, C′ be coefficients
of anholonomy Then

ω =

[(

ω H
−Ht Ω

)

,

(

Ω′ H ′

−H ′t ω′

)]

ω̃ =

[(

ω 0
0 Ω

)

,

(

Ω′ 0
0 ω′

)]

˜̃ω =

[(

ω 0
0 C

)

,

(

C′ 0
0 ω′

)]

The coefficients of anholonomy are defined by [Eā, Eb̄] =: Cāb̄
c̄Ec̄ and can be

used to express all the connection components and the deformation tensors. It
is interesting to note their behaviour under a local O(k)×O(k′) transformation:

C̃ab
c =ua

dub
eCde

fu
−1
f

c + 2Ẽ[a[ub]
f ]u

−1
f

c, Coefficients of anholonomy

C̃ab
c′ =ua

dub
eCde

f ′

u
−1
f ′

c′ , Tensor

C̃a′b
c =ua′

d′

ub
eCd′e

fu
−1
f

c + Ẽa′ [ub
f ]u

−1
f

c, Connection

This is what enables the defininition of the Vidal connection, i.e. the observation
that the Cab′

c′ , Ca′b
c parts of the structure coefficients transform as connections

under local O(k) × O(k′) transformations.

Proposition 3.24

Let ω, Ω, H, L, K be the components of the Levi-Civita connection and C the
coefficients of anholonomy, then they are related through the following relations,

Cabc = 2ω[ab]c

Ca′bc = Ω′
a′bc + Hbca′

Cabc′ = 2Labc′

Ca′b′c = 2L′
a′b′c

Cab′c′ = Ωab′c′ + H ′
b′c′a

Ca′b′c′ = 2ω′
[a′b′]c′

13



with inverse relations

ωabc = Ca[bc] −
1

2
Cbca =

1

2
Cabc + Cc(ab)

Ω′
a′bc = Ca′[bc] −

1

2
Cbca′

Kabc′ = Cc′(ab)

Labc′ =
1

2
Cabc′

Habc′ =
1

2
Cabc′ + Cc′(ab)

H ′
a′b′c =

1

2
Ca′b′c + Cc(a′b′)

L′
a′b′c =

1

2
Ca′b′c

K ′
a′b′c = Cc(a′b′)

Ωab′c′ = Ca[b′c′] −
1

2
Cb′c′a

ω′
a′b′c′ = Ca′[b′c′] −

1

2
Cb′c′a′ =

1

2
Ca′b′c′ + Cc′(a′b′)

4 The curvature components and their relations

As fiber bundles and fibrations are examples of almost product manifolds with
the additional property of the existense of a surjective submersion of the total
space down to a base space, it would be interesting to see what parts of the Vidal
and adapted connections, which are defined on the total space, that survive
under this submersion. In the total space two new differential operators were
defined in [1].

Definition 4.1

Let I be an almost product structure on a manifold M with exterior derivative
d. Let furthermore dI denote the exterior derivative associated with I and define
two new differential operators by

d :=
1

2
(d + dI)

d′ :=
1

2
(d − dI)

An equivalent definition is by the two projection operators defined by the en-
domorphism I, P := 1

2 (1 + I) and P ′ := 1
2 (1− I), then the operators are simply

d ≡ dP and d′ ≡ dP′.

These differential operators become coboundary operators if and only if the Ni-
jenhuis tensor vanishes, which is the same as to say that both the characteristic
distributions of the almost product structure are integrable. In a fibration for
instance this is not normally true, except for the trivial case of a product mani-
fold, so we will keep track of all components surviving the submersion and those

14



who will not. When it comes to these differential operators it is therefor clear
that d defined above will in general differ from the exterior derivative defined
on the base space. By projecting out the semi-basic parts of all quantities we
can keep track of the parts that survives the submersion.

Definition 4.2

Let the triplet (M , g, I) denote a riemannian almost product structure and D,
D

′ be the associated distributions then define the brackets associated with these
distributions with following characteristics

[ · , · ]D : Λ1
D
× Λ1

D
7−→ Λ1

D
,

[ · , · ]D
′

: Λ1
D′ × Λ1

D′ 7−→ Λ1
D′ ,

by

[X, Y ]D := P [PX,PY ],

[X, Y ]D
′

:= P ′[P ′X,P ′Y ],

where X, Y ∈ Λ1 are vectorfields on M .

Here it is clear that the twisting tensor that measures the amount of non-
commutativity is non-semi-basic. The two brackets defined above will therefor
not satisfy the Jacobi identity in the total space, but will differ with some terms
involving the twisting tensors. The same procedure can be made to define the
semi-basic torsions and curvature tensor of a distribution.

Definition 4.3

Let the triplet (M , g, I) denote a riemannian almost product structure and
D, D

′ be the associated distributions. Let further T p
q (TM ) denote the set of

(p, q)-tensors on M and T p
q (D) (T p

q (D′)) denote the set of tensors lying entirely
in D (D′). Now define the associated Levi–Civita connections with following
characteristics

∇D

X : T p
q (TM ) 7−→ T p

q (D),

∇D
′

X : T p
q (TM ) 7−→ T p

q (D′),

through

∇D

XY :=P∇PXPY,

∇D
′

X :=P ′∇P′XP ′Y,

where X, Y ∈ Λ1 are vectorfields on M . Further define the torsion and curvature
of the corresponding connections by

T D(X, Y ) := ∇D

XY −∇D

Y X − [X, Y ]D,

T D
′

(X, Y ) := ∇D
′

X Y −∇D
′

Y X − [X, Y ]D
′

,

and

RD(X, Y )Z := ∇D

X∇D

Y Z −∇D

Y ∇D

XZ −∇D

[X,Y ]DZ,

RD
′

(X, Y )Z := ∇D
′

X ∇D
′

Y Z −∇D
′

Y ∇D
′

X Z −∇D
′

[X,Y ]D′ Z.
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In this case it is clear that the curvature defined above, will not in general be
tensorial in the latter indices. As before these non-tensorial parts will vanish
under the submersion. The torsion will still be tensorial though.

4.1 The Vidal connection

In this subsection, all tensors associated with the Vidal connection will be de-
rived, that is the torsion tensor, the non-metricity tensor, the Riemann tensor
and its traces. The curvature identities are used to express all components but
the two totally semi-basic ones only in terms of the different irreducible parts
of the deformation tensor and its derivatives. From these curvature identities
there also arise a couple of new relations involving only parts of the deforma-
tion tensor. Two of these will evidently become the Bianchi identity of the two
twisting tensors but two others will appear in a more unfamiliar fashion.

From the definition it is clear that the Vidal connection is neither torsion-
free, nor metric in the generic case of an almost product manifold. It is therefor
interesting to see what the torsion and non-metricity tensor look like in this
case. In ref. [1] the following proposition was derived.

Proposition 4.4

Let the triplet (M , g, I) define an almost product manifold, let NI denote the

Nijenhuis tensor of I and ˜̃∇ denote the Vidal connection defined in 3.18, then,

1

4
NI(X, Y ) = ˜̃T (X, Y ).

Together with proposition 3.14 the torsion tensor can be written in component
form.

Proposition 4.5

Let ˜̃T be the torsion tensor of the Vidal connection, ˜̃∇, then in component form
it reads

˜̃T ab
c =0,

˜̃T ab
c′ = − 2Lab

c′ ,

˜̃T a′b
c =0,

˜̃T ab′
c′ =0,

˜̃T a′b′
c = − 2L′

a′b′
c,

˜̃T a′b′
c′ =0.

and

˜̃T a =0,

˜̃T a′ =0.
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As was seen in [1] the torsion tensor measures the non-integrability of the two
complementary distributions defined by an almost product structure. The non-
metricity of the Vidal connection is put in the next proposition.

Proposition 4.6

Let the triple (M , g, I) denote a riemannian almost product structure with

associated metrical decomposition g = g + g′. Let further ˜̃∇ denote the Vidal-
connection then the following relations hold

( ˜̃∇Zg)(X, Y ) = 0

( ˜̃∇Z′g)(X, Y ) = −2KZ′(X, Y ) = (LZ′g)(X, Y )

( ˜̃∇Zg′)(X ′, Y ′) = −2K ′
Z(X ′, Y ′) = (LZg′)(X ′, Y ′)

( ˜̃∇Z′g′)(X ′, Y ′) = 0

In component form the non-metricity tensor can be read off from the next
proposition.

Proposition 4.7

Let ˜̃Q be the non-metricity tensor of the Vidal connection, ˜̃∇, then in component
form it reads

˜̃Q
abc

=0

˜̃Q
a′bc

= − 2Kbca′

˜̃Q
abc′

=0

˜̃Q
a′b′c

=0

˜̃Q
ab′c′

= − 2K ′
b′c′a

˜̃Q
a′b′c′

=0

The two traces following from a three tensor symmetric in two indices is found
to be

˜̃Q
1

a
=0

˜̃Q
1

a′
=0

˜̃Q
a

:= ˜̃Q
2

a
= −2κ′

a

˜̃Q
a′

:= ˜̃Q
2

a′
= −2κa′

The basic curvature relations are found from definitions 1 and 4.3, they are
given in the proposition below,
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Proposition 4.8

Let ˜̃∇ be the Vidal connection and ˜̃R denote the curvature tensor theorof then
the different parts reads

˜̃R(X, Y )Z = RD(X, Y )Z − 2P [L(X, Y ), Z]

˜̃R(X, Y )Z ′ = −2( ˜̃∇Z′L)(X, Y )

˜̃R(X, Y ′)Z = P∇XP [Y ′, Z] − P [Y ′,P∇XZ] − P∇P[X,Y ′]Z − P [P ′[X, Y ′], Z]

In order to deal with the curvature identities it is convenient to put these rela-
tions in component form.

Proposition 4.9

Let ˜̃R be the Riemann-tensor with respect to the Vidal-connection, then ˜̃R has
the following components,

˜̃Rabc
d =RD

abc
d − 2Lab

e′

Ce′c
d

˜̃Rabc
d′

=0

˜̃Rabc′
d =0

˜̃Rabc′
d′

= − 2( ˜̃∇c′L)ab
d′

˜̃Ra′bc
d =Ea′ [ωbc

d] − Eb[Ca′c
d] − Ca′b

eωec
d − Ca′b

e′

Ce′c
d − Ca′c

eωbe
d + ωbc

eCa′e
d

˜̃Ra′bc
d′

=0

˜̃Ra′bc′
d =0

˜̃Ra′bc′
d′

=Ea′ [Cbc′
d′

] − Eb[ωa′c′
d′

] − Ca′b
e′

ωe′c′
d′

− Ca′b
eCec′

d′

− ωa′c′
e′

Cbe′

d′

+ Cbc′
e′

ωa′e′

d′

˜̃Ra′b′c
d = − 2( ˜̃∇cL)a′b′

d

˜̃Ra′b′c
d′

=0

˜̃Ra′b′c′
d =0

˜̃Ra′b′c′
d′

=RD
′

a′b′c′
d′

− 2La′b′
eCec′

d′

This is the “raw” expressions for the curvature components of the Vidal con-
nection, but after using the identities of the Riemann tensor seen in section 2.4
these will simplify remarkably. There will also appear a couple of identities in-
volving only parts of the deformation tensor. Starting with the second identity
it can be seen, using the Tic-Tac-Toe notation introduced in appendix A, that
the second identity can be split according to the rigging into 8 irreducible parts,
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corresponding to the following young tableaux.

⊗ =





o
o
o

⊗ o



 ⊕





o
o
o

⊗ x



 ⊕





o
o
x

⊗ o



 ⊕





o
o
x

⊗ x



 ⊕





o
x
x

⊗ o



 ⊕





o
x
x

⊗ x



 ⊕





x
x
x

⊗ o



 ⊕





x
x
x

⊗ x





Here will be listed only the first half of the identities as they of course are
symmetric upon changing primes and unprimes.

˜̃R[abc]
d = 0 (3)

˜̃∇[aLbc]
d′

= 0 (4)

˜̃Rc′[ab]d = −Lab
e′

L′
c′e′

d (5)

˜̃Rabc′
d′

= −2 ˜̃∇c′Lab
d′

(6)

So in conclusion the first identity is structurally inherited by the totally semi-
basic part of the Vidal curvature, the second leads to a bianchi identity for

the twisting tensor, the third relating the anti-symmetric part of ˜̃Rc′[ab]
d in

terms of the twisting tensors and the fourth a faster way of deriving the ˜̃Rabc′
d′

component. Thus, the following proposition is proved:

Proposition 4.10

Let ˜̃∇ be the Vidal connection associated with a almost product structure and
L, L′ be the respective twisting tensors of the associated distributions then the
following Bianchi identities hold,

˜̃∇[aLbc]
d′

=0

˜̃∇[a′L′
b′c′]

d =0

The third identity which is decomposed as,

⊗ =

(

o
o

⊗ o o

)

⊕

(

o
x

⊗ o o

)

⊕

(

o
o

⊗ o x

)

⊕

(

o
o

⊗ x x

)

⊕

(

o
x

⊗ o x

)

⊕

(

x
x

⊗ o o

)

⊕

(

x
x

⊗ o x

)

⊕

(

o
x

⊗ x x

)

⊕

(

x
x

⊗ x x

)

In this case there are 9 irreducible parts of which five will be listed and the
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other follows due to symmetry.

˜̃Rab(cd) = −2Lab
e′

Kcde′ (7)

˜̃Ra′b(cd) = −( ˜̃∇bK)cda′ (8)

0 = 0, (9)

˜̃Rab(c′d′) = 2( ˜̃∇[aK ′)c′d′|b] (10)

0 = 0 (11)

The first identity here gives no new information, the second gives yet another

part of the ˜̃Ra′bcd component, the third and the fifth contain nothing while the

fourth together with the original expression for the ˜̃Rabc′d′ component gives a
new non-trivial identity which proves the next proposition.

Proposition 4.11

Let ˜̃∇ be the Vidal-connection, K, L, K ′, L′ be the second fundamental tensors
of a almost product structure then we have the following identities

˜̃∇[ZK ′
W ](X

′, Y ′) + ˜̃∇(X′LY ′)(Z, W ) = 0

˜̃∇[Z′KW ′](X, Y ) + ˜̃∇(XL′
Y )(Z

′, W ′) = 0

In component form the same expressions read

( ˜̃∇[aK ′)c′d′|b] + ( ˜̃∇(c′L)ab|d′) =0

( ˜̃∇[a′K)cd|b′] + ( ˜̃∇(cL
′)a′b′|d) =0

Contracted the identities read

( ˜̃∇[aκ′)b] + ( ˜̃∇c′L)ab
c′ =0

( ˜̃∇[a′κ)b′] + ( ˜̃∇cL)a′b′
c =0

Here the notation
LX′(Y, Z) := g(L(Y, Z), X ′)

is used. The last identity of the Riemann curvature is the most non-trivial of
them all. It can be decomposed through the box symmetry, i.e.

= o o
o o

⊕ o o
o x

⊕ o o
x x

⊕ o x
o x

⊕ x x
x o

⊕ x x
x x

.

The only identity of these which gives new information is the second why it is
the only one listed. This identity though gives the opportunity of writning the

entire ˜̃Ra′bcd component purely in terms of the different parts of the deformation
tensor and its derivatives.

˜̃Ra′bcd = −( ˜̃∇bK)cda′ − 2( ˜̃∇[cK)d]ba′ + 2Lcd
e′

L′
a′e′b − 4Lb[c

e′

L′
a′e′|d] (12)

This relation together with the identity in 4.11 prooves the following proposition
which is the final form of the Vidal curvature components.
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Proposition 4.12

Let ˜̃R be the curvature tensor of the Vidal connection then its components can
be written

˜̃Rabcd =RD

abcd − 2Lab
e′

Ce′cd

˜̃Rabcd′ =0

˜̃Rabc′d =0

˜̃Rabc′d′ =2[( ˜̃∇[aK ′)c′d′|b] − ( ˜̃∇[c′L)ab|d′]]

˜̃Ra′bcd = − ( ˜̃∇bK)cda′ − 2( ˜̃∇[cK)d]ba′ + 2Lcd
e′

L′
a′e′b − 4Lb[c

e′

L′
a′e′|d]

˜̃Ra′bcd′ =0

˜̃Ra′bc′d =0

˜̃Ra′bc′d′ =( ˜̃∇a′K ′)c′d′b + 2( ˜̃∇[c′K
′)d′]a′b − 2L′

c′d′

eLbea′ + 4L′
a′[c′

eLbe|d′]

˜̃Ra′b′cd =2[( ˜̃∇[a′K)cd|b′] − ( ˜̃∇[cL
′)a′b′|d]],

˜̃Ra′b′cd′ =0

˜̃Ra′b′c′d =0

˜̃Ra′b′c′d′ =RD
′

a′b′c′d′ − 2La′b′
eCec′d′

From the final expressions of the Vidal curvature components the Schouten two-
form and the Ricci tensor can be derived. For the Schouten two-form it is easily
seen that it ends up as a total exterior derivative of the two mean curvatures by
looking at the trace of the curvature two-form in the Cartan formalism, namely,

V := Rc̄
c̄ = d ˜̃ωc̄

c̄ = dκ + dκ′. (13)

Now of course ˜̃ω is only a local object, and therefor it is not sure that V can be
written as an exact form globally - this leaves us with the following proposition:

Proposition 4.13

Let ˜̃∇ be the Vidal connection then the Schouten two-form, ˜̃V , of the Vidal
connection can locally be written

V = dκI

where κI = κ + κ′. From the integrability condition dV = 0 it is obvious that

V ∈ H2(M ),

where H2(M ) denotes the second cohomology group of the manifold M . In
component form the Schouten two-form looks like

˜̃V ab =2( ˜̃∇[aκ′)b] − 2Lab
c′κc′ ,

˜̃V a′b =( ˜̃∇a′κ′)b − ( ˜̃∇bκ)a′ ,

˜̃V a′b′ =2( ˜̃∇[a′κ)b′] − 2La′b′
cκ′

c.
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Now finally the Ricci tensor and the curvature scalar of the Vidal connection
can easily be derived.

Proposition 4.14

Let ˜̃∇ be the Vidal connection then the Ricci tensor reads in component form

˜̃Rab =RD

ab − 2Lac
e′

Ce′b
c

˜̃Ra′b = − ( ˜̃∇bκ)a′ + 4Lbc
e′

L′
a′e′

c

˜̃Rab′ = − ( ˜̃∇b′κ
′)a + 4Lac

e′

L′
b′e′

c

˜̃Ra′b′ =RD
′

a′b′ − 2L′
a′c′

eCeb′
c′

and the Riemann curvature scalar is given by

˜̃R = ˜̃R + ˜̃R′ = RD + RD
′

− 2Lab
c′Cc′

ab − 2L′
a′b′

cCc
a′b′

4.2 The adapted connection

In direct analogy to the previous section, several curvature- and torsion relations
are derived with respect to the adapted connection. In contrast to the Vidal-
connection the adapted one is metric. In this case the Nijenhuis-tensor is related
to the torsion in the way showed by the next proposition. The metricity of the
connection has its price though, as is seen below the torsion tensor is more
complicated in this case. Some generalized Bianchi identities for the twisting
tensor L is also yielded in this case. All tensors, except the totally semi-basic
ones, derived from the Riemann tensor, are expressed in terms of the irreducible
parts of the deformation tensor.

Proposition 4.15

Let the triplet (M , g, I) define an riemannian almost product structure, let NI

denote the Nijenhuis tensor of I and ∇̃ the adapted connection defined in 3.17,
then we have the following relation,

1

2
NI(X, Y ) = T̃ (X, Y ) + T̃ (IX, IY )

Proposition 4.16

Let T̃ be the torsion tensor of the adapted connection, ∇̃, then in component
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form it reads,

T̃ ab
c =0

T̃ ab
c′ = − 2Lab

c′

T̃ a′b
c = − Hb

c
a′

T̃ ab′
c′ = − H ′

b′
c′

a

T̃ a′b′
c = − 2L′

a′b′
c

T̃ a′b′
c′ =0.

and

T̃ a = − κ′
a

T̃ a′ = − κa′

The curvature components can further be simplified as shown in the next propo-
sition. Notice that they are expressed in terms of the Vidal connection.

Proposition 4.17

Let R̃ be the Riemann-tensor with respect to the adapted connection, then R̃
has the following components,

R̃abc
d =˜̃Rabc

d + 2Lab
e′

Hc
d

e′

R̃abc
d′

=0

R̃abc′
d =0

R̃abc′
d′

=˜̃Rabc′
d′

− 2( ˜̃∇[aH ′)c′
d′

|b] − 2H ′
c′

e′

[aH ′
e′

d′

|b]

R̃a′bc
d =˜̃Ra′bc

d + ( ˜̃∇bH)c
d
a′

R̃a′bc
d′

=0

R̃a′bc′
d =0

R̃a′bc′
d′

=˜̃Ra′bc′
d′

− ( ˜̃∇a′H)c′
d′

b

R̃a′b′c
d =˜̃Ra′b′c

d − 2( ˜̃∇[a′H)c
d
|b′] − 2Hc

e
[a′H ′

e
d
|b′]

R̃a′b′c
d′

=0

R̃a′b′c′
d =0

R̃a′b′c′
d′

=˜̃Ra′b′c′
d′

+ 2La′b′
eHc′

d′

e

where,

R̃abc′
d′

:= Ea[Ωbc′
d′

] − Eb[Ωac′
d′

] − Cab
eΩec′

d′

− 2Ω[a|c′
e′

Ωb]e′

d′

− 2Lab
e′

ωe′c′
d′

R̃a′b′c
d := Ea′ [Ωb′c

d] + Eb′ [Ωa′c
d] − Ca′b′

e′

Ωe′c
d − 2Ω[a′|c

eΩb′]e
d − 2L′

a′b′
eωec

d
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Using proposition 4.12 the curvature tensor of the adapted connection can be
written entirely in terms of the semi-basic parts of the Vidal curvature, parts of
the deformation tensors and the Vidal covariant derivative thereof.

Proposition 4.18

Let R̃ be the curvature tensor of the adapted connection then its components
can be written

R̃abcd =˜̃Rabcd + 2Lab
e′

Hcde′

R̃abcd′ =0

R̃abc′d =0

R̃abc′d′ = − 2[( ˜̃∇[aL′)c′d′|b] + ( ˜̃∇[c′L)ab|d′] − H ′
c′

e′

[aH ′
d′e′|b]]

R̃a′bcd =( ˜̃∇bL)cda′ − 2( ˜̃∇[cK)d]ba′ + 2Lcd
e′

L′
a′e′b − 4Lb[c

e′

L′
a′e′|d]

R̃a′bcd′ =0

R̃a′bc′d =0

R̃a′bc′d′ = − ( ˜̃∇a′L′)c′d′b + 2( ˜̃∇[c′K
′)d′]a′b − 2L′

c′d′

eLbea′ + 4L′
a′[c′

eLbe|d′]

R̃a′b′cd = − 2[( ˜̃∇[a′L)cd|b′] + ( ˜̃∇[cL
′)a′b′|d] − Hc

e
[a′Hde|b′]]

R̃a′b′cd′ =0

R̃a′b′c′d =0

R̃a′b′c′d′ =˜̃Ra′b′c′d′ + 2La′b′
eH ′

c′d′e

These relations can be expressed purely in terms of the adapted connection
instead of the Vidal connection.

Proposition 4.19

Let R̃ be the curvature tensor of the adapted connection then its components
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can be written

R̃abcd =˜̃Rabcd + 2Lab
e′

Hcde′

R̃abcd′ =0

R̃abc′d =0

R̃abc′d′ = − 2[(∇̃[aL′)c′d′|b] + (∇̃[c′L)ab|d′] − W ′
c′

e′

[aW ′
d′e′|b] + L′

c′
e′

[aL′
d′e′|b] +

+ 2L[a|
e
c′Lb]ed′ + 2W[a

e
[c′Lb]e|d′] +

2

k
Lab[c′κd′]]

R̃a′bcd =(∇̃bL)cda′ − 2(∇̃[cK)d]ba′ − Lcd
e′

H ′
e′a′b − 2Kb[c|

e′

H ′
e′a′|d]

R̃a′bcd′ =0

R̃a′bc′d =0

R̃a′bc′d′ = − (∇̃a′L′)c′d′b + 2(∇̃[c′K
′)d′]a′b + Lc′d′

eH ′
eba′ + 2Ka′[c′|

eH ′
eb|d′]

R̃a′b′cd = − 2[(∇̃[a′L)cd|b′] + (∇̃[cL
′)a′b′|d] − Wc

e
[a′Wde|b′] + Lc

e
[a′Lde|b′] +

+ 2L′
[a′|

e′

cL
′
b′]e′d + 2W ′

[a′

e′

[cL
′
b′]e′|d] +

2

k′
L′

a′b′[cκ
′
d]]

R̃a′b′cd′ =0

R̃a′b′c′d =0

R̃a′b′c′d′ =˜̃Ra′b′c′d′ + 2La′b′
eH ′

c′d′e

From previous proposition the Ricci tensor of the adpted connection can simply
be deduced by contraction as the adapted connection is metric. It should be
stressed that this Ricci tensor is in general not symmetric.

Proposition 4.20

Let ∇̃ be the adapted connection then the Ricci tensor reads in component form

R̃ab =˜̃Rab + 2Lac
e′

Hb
c
e′

R̃a′b =(∇̃cH)b
c
a′ − Hbc

e′

H ′
e′a′

c − (∇̃bκ)a′ + κe′

H ′
e′a′b

R̃ab′ =(∇̃c′H
′)b′

c′

a − H ′
b′c′

eHea
c′ − (∇̃b′κ)a + κ′eHeab′

R̃a′b′ =˜̃Ra′b′ + 2L′
a′c′

eH ′
b′

c′

e

and the Riemann curvature scalar is given by

R̃ = R̃ + R̃′ = ˜̃R + ˜̃R′ + 2Lab
c′Lab

c′ + 2L′
a′b′

cL′a
′b′

c

The generalized Biachi-identities for the twisting tensor L are given in next
proposition. They were derived by using the antisymmetry ((i) of proposition
2.4) and the components expressed in terms of the adapted connection, see
proposition 4.19.
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Proposition 4.21

Let ∇̃ be the adapted connection associated with an almost product structure
and L, L′, K, K ′ be the respective twisting and extrinsic curvature tensors of
the associated distributions then the following identities hold

∇̃[aLbc]
d′

+ L[ab|
e′

He′

d′

|c] =0

∇̃[a′Lb′c′]
d + L[a′b′|

eHe
d
|c′] =0

As was seen in previous subsection, where the Vidal connection was studied,
new identities between parts of the deformation tensors arose as integrability
conditions on these while imposing the identities of the curvature tensor. These
were derived in proposition 4.19 above and in the same fashion the corresponding
identities for the adapted connection arise.

Proposition 4.22

Let ∇̃ be the adapted connection, K, L, K ′, L′ be the second fundamental tensors
with respect to a almost product structure, I, then the following identities hold

(∇̃[aK ′)c′d′|b] + (∇̃(c′L)ab|d′) − 2L′
(c′|

e′

[aK ′
e′|d′)|b] − 2K[a|

e
(c′Le|b]d′) =0,

(∇̃[a′K)cd|b′] + (∇̃(cL
′)a′b′|d) − 2L(c|

e
[a′Ke|d)|b′] − 2K ′

[a′|
e′

(cL
′
e′|b′]d) =0.

These identities look in the contracted case like

(∇̃[aκ′)b] + (∇̃c′L)ab
c′ − 2W[a|

e
c′Le|b]

c′ −
2

k
Lab

c′κc′ =0,

(∇̃[a′κ)b′] + (∇̃cL)a′b′
c − 2W[a′|

e′

cLe′|b′]
c −

2

k′
La′b′

cκ′
c =0.

4.3 The Levi-Civita connection

In this section all curvature relations for the Levi-Civita connection is given.
The curvature, Ricci and the curvature scalar are expressed in terms of the irre-
ducible components of the deformation-tensor. Starting from Cartan’s structure
equations and writing the curvature two-form as,

Rc̄
d̄ :=dωc̄

d̄ − ωc̄
ē ∧ ωē

d̄ =

=

(

dωc
d − ωc

e ∧ ωe
d − Hc

e′

∧ He′

d, dHc
d′

− ωc
e ∧ He

d′

− Hc
e′

∧ ωe′

d′

dHc′
d − ωc′

e′

∧ He′

d − Hc′
e ∧ ωe

d, dωc′
d′

− ωc′
e′

∧ ωe′

d′

− Hc′
e ∧ He

d′

)

the components can be given in terms of the adapted connection.

Proposition 4.23

Let R be the Riemann-tensor with respect to the Levi-Civita connection, then
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R has the following components,

Rabc
d =R̃abc

d + 2H[a|c
e′

Hb]
d

e′

Rabc
d′

=2(∇̃[aH)b]c
d′

+ 2Lab
e′

H ′
e′

d′

c

Rabc′
d = − 2(∇̃[aH)b]

d
c′ − 2Lab

e′

H ′
e′c′

d

Rabc′
d′

=R̃abc′
d′

+ 2H[a|
e
c′Hb]e

d′

Ra′bc
d =R̃a′bc

d − H ′
a′

e′

cHb
d

e′ + Hbc
e′

H ′
a′e′

d

Ra′bc
d′

=(∇̃a′H)bc
d′

+ (∇̃bH
′)a′

d′

c − Hb
e
a′Hec

d′

− H ′
a′

e′

bH
′
e′

d′

c

Ra′bc′
d = − (∇̃a′H)b

d
c′ − (∇̃bH

′)a′c′
d + Hb

e
a′He

d
c′ + H ′

a′

e′

bH
′
e′c′

d

Ra′bc′
d′

=R̃a′bc′
d′

− H ′
a′c′

eHbe
d′

+ Hb
e
c′H

′
a′

d′

e

Ra′b′c
d =R̃a′b′c

d + 2H ′
[a′|

e′

cH
′
b′]e′

d

Ra′b′c
d′

= − 2(∇̃[a′H ′)b′]
d′

c − 2L′
a′b′

eHec
d′

Ra′b′c′
d =2(∇̃[a′H ′)b′]c′

d + 2L′
a′b′

eHe
d

c′

Ra′b′c′
d′

=R̃a′b′c′
d′

+ 2H ′
[a′|c′

eH ′
b′]

d′

e

These are also known as the Gauss-Codazzi relations. In the case of the Levi–
Civita connection though, it is clear that its curvature tensor possesses the box
symmetry, i.e.

From the Tic–Tac–Toe notation it follows that the box symmetry reduces to
six irreducible parts under a rigging. From the previous analysis of the Vidal
and the adapted curvatures these can again be written entirely in terms of the
semi-basic components and parts of the deformation tensors.

Proposition 4.24

Let R be the Riemann tensor with respect to the Levi–Civita connection then its
components can be written in terms of just the deformation tensor and adapted
covariant derivatives thereof plus the complete longitudal and normal parts of

27



the adapted curvature,

Rabcd =R̃abcd + 2H[a|c
e′

Hb]de′

Rabcd′ =2(∇̃[aH)b]cd′ + 2Lab
e′

H ′
e′d′c

Rabc′d′ = − 2[(∇̃[c′L)ab|d′] + (∇̃[aL′)c′d′|b] + L[a|
e
c′Lb]ed′ + L′

[c′|
e′

aL′
d′]e′b −

− W[a|
e
c′Wb]ed′ − W ′

[c′|
e′

aW ′
d′]e′b]

Ra′bc′d =
1

2
Ra′c′bd − (∇̃(a′|K)bd|c′) − (∇̃(bK

′)a′c′|d) + K(b|
e
a′Kd)ec′ − L(b|

e
a′Ld)ec′ +

+ K ′
(a′|

e′

bK
′
c)e′d − L′

(a′|
e′

bL
′
c)e′d

Ra′b′c′d =2(∇̃[a′H ′)b′]c′d + 2L′
a′b′

eHedc′

Ra′b′c′d′ =R̃a′b′c′d′ + 2H ′
[a′|c′

eH ′
b′]d′e

In ref. [5] these were deduced in terms of the Levi–Civita connection but as it
does not preserve the rigging these are better expressed in terms of the adapted
or the Vidal connection. Note that the expressions are only decomposed in
terms of the irreducible parts of the deformation tensors, where it is necessary
in order to make manifest the symmetries. In all other cases it is a straight
forward process to do just by insertion.

Proposition 4.25

Let R be the Riemann tensor with respect to the Levi–Civita connection then
its components can be written in terms of just the deformation tensor and Vidal
covariant derivatives thereof plus the complete longitudal and normal parts of
the Vidal curvature as

Rabcd =˜̃Rabcd + 2Lab
e′

Hcde′ + 2H[a|c
e′

Hb]de′

Rabcd′ =2( ˜̃∇[aH)b]cd′ + 2H[b|c
e′

H ′
d′e′|a] + 2Lab

e′

H ′
e′d′c

Rabc′d′ = − 2[( ˜̃∇[c′L)ab|d′] + ( ˜̃∇[aL′)c′d′|b] +
2

k′
κ′

[aL
′
c′d′|b] +

2

k
κ[c′Lab|d′]

− W[a|
e
c′Wb]ed′ − W ′

[c′|
e′

aW ′
d′]e′b − 2W[a|

e
[c′Lb]e|d′] − 2W ′

[c′|
e′

[aL
′
d′]e′|b] −

− L[a|
e
c′Lb]ed′ − L′

[c′|
e′

aL′
d′]e′b]

Ra′bc′d =
1

2
Rbda′c′ −

˜̃∇(a′|Kbd|c′) −
˜̃∇(b|K

′
a′c′|d) − W(d|

e
(a′Wb)ec′) − L(d|

e
(a′Lb)ec′) −

− 2W(d
e
(a′|Lb)e|c′) −

1

k2
κa′κc′ηbd −

1

k
κ(a′|Wbd|c′) −

− W ′
(c′|

e′

(b|W
′
a′)e′d) − L′

(c′|
e′

(bL
′
d)e′a′) −

− 2W ′
(c′

e′

(b|L
′
d)e′|a′) −

1

k′2
κ′

bκ
′
dηa′c′ −

1

k′
κ′

(b|Wa′c′|d)

Ra′b′c′d =2( ˜̃∇[a′H ′)b′]c′d + 2H ′
[b′|c′

eHde|a′] + 2L′
a′b′

eHedc′

Ra′b′c′d′ =˜̃Ra′b′c′d′ + 2L′
a′b′

eH ′
c′d′e + 2H ′

[a′|c′
eH ′

b′]d′e
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From propositions 4.24 and 4.25 the Ricci tensor and the curvature scalar is
most easily deduced.

Proposition 4.26

Let ∇ be the Levi-Civita connection then the Ricci tensor reads in terms of the
adapted connection,

Rab =Rab + R′′
ab = R̃(ab) −

1

k
(∇̃c′κ)c′ηab − (∇̃(aκ′)b) − (∇̃c′W )ab

c′ +
1

k
κ2ηab +

+ Wab
c′κc′ +

1

k′
κ′

aκ′
b + W ′

c′e′aW ′c
′e′

b − L′
c′e′aL′c

′e′

b

Rab′ =(
1 − k

k
)(∇̃aκ)b′ + (

1 − k′

k′
)(∇̃b′κ

′)a + (∇̃cW )a
c
b′ +

+ (∇̃c′W
′)b′

c′

a + (∇̃cL)a
c
b′ + (∇̃c′L

′)b′
c′

a +

+ 4La
ec′L′

b′c′e − 2La
ce′

W ′
b′e′c − 2L′

b′
c′eWaec′ −

2

k′
Lacb′κ

′c −
2

k
Lb′c′aκc′ ,

Ra′b′ =R′
a′b′ + R′′

a′b′ = R̃(a′b′) −
1

k′
(∇̃cκ

′)cη′
a′b′ − (∇̃(a′κ)b′) − (∇̃cW

′)a′b′
c +

1

k′
κ′2η′

a′b′ +

+ W ′
a′b′

cκ′
c +

1

k
κa′κb′ + Wcea′W ce

b′ − Lcea′Lce
b′

where the following definitions are used

Rab :=Racb
c = R̃(ab) − Wa

ec′Wbec′ + (
k − 2

k
)κc′Wabc′ + (

k − 1

k2
)ηabκ

2 + La
ec′Lbec′

R′′
ab :=Rac′b

c′ = −(∇̃(aκ′)b) − (∇̃c′W )ab
c′ −

1

k
(∇̃c′κ)c′ηab + W ′c

′e′

aW ′
c′e′b +

1

k′
κ′

aκ′
b −

− L′c
′e′

aL′
c′e′b + Wa

ec′Wbec′ +
2

k
κc′Wabc′ +

1

k2
ηabκ

2 − La
ec′Lbec′

and similarly for the R′
a′b′ component. The Riemann curvature scalar is given

by

R =R + 2R′′ + R′ = R̃ + R̃′ +
1 − k

k
κ2 +

1 − k′

k′
κ′2 − 2∇ · κI + W 2 + W ′2 − L2 − L′2

where the following definitions are used

R :=Rab
ab = R̃ + κ2 − K2 + L2

R′′ :=Rab′
ab′ = −∇̃a′κa′

− ∇̃aκ′a + W 2 − L2 +
1

k
κ2 + W ′2 − L′2 +

1

k′
κ′2

R′ :=Ra′b′
a′b′ = R̃′ + κ′2 − K ′2 + L′2

Part of which is found in [7]. In the expressions on the curvature scalar above,
we have used the following relation

∇ · κI = (∇̃a′κ)a′

+ (∇̃aκ′)a − κ2 − κ′2 (14)

(15)
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and the notation L2 := Labc′L
abc′ etc. In terms of the Vidal connection the

Ricci tensor and the curvature scalar is given in next proposition.

Proposition 4.27

Let ∇ be the Levi-Civita connection then the Ricci tensor reads, in component
form, in terms of the Vidal connection

Rab =R̃(ab) −
1

k
( ˜̃∇c′κ)c′ηab − ( ˜̃∇(aκ′)b) − ( ˜̃∇c′W )ab

c′ − 2Wa
ec′Webc′ +

+ (
k − 2

k
)Wab

c′κc′ +
1

k′
κ′

aκ′
b +

1

k
κ2ηab + W ′

c′e′aW ′c
′e′

b −

− L′
c′e′aL′c

′e′

b + 2La
ec′Lbec′

Rab′ =(
1 − k

k
)( ˜̃∇aκ)b′ + (

1 − k′

k′
)( ˜̃∇b′κ

′)a + ( ˜̃∇cW )a
c
b′ +

+ ( ˜̃∇c′W
′)b′

c′

a + ( ˜̃∇cL)a
c
b′ + ( ˜̃∇c′L

′)b′
c′

a +

+ 6La
ec′L′

b′c′e + 2Wa
ec′W ′

b′c′e − (
k + k′ − 2

kk′
)κ′

aκb′ −

− Lacb′κ
′c − Lb′c′aκc′ − (

k′ − 2

k′
)Wacb′κ

′c − (
k − 2

k
)Wb′c′aκc′

Ra′b′ =R̃(a′b′) −
1

k′
( ˜̃∇cκ

′)cη′
a′b′ − ( ˜̃∇(a′κ)b′) − ( ˜̃∇cW

′)a′b′
c2W ′

a′

e′cW ′
e′b′c −

+ (
k′ − 2

k′
)W ′

a′b′
cκ′

c +
1

k
κa′κb′ +

1

k′
κ′2η′

a′b′ + Wcea′W ce
b′ −

− Lcea′Lce
b′ + 2L′

a′

e′cL′
e′b′c

where the following definitions were used

Rab :=Racb
c = ˜̃R(ab) − Wa

ec′Wbec′ + (
k − 2

k
)κc′Wabc′ + (

k − 1

k2
)ηabκ

2

+ 3La
ec′Lbec′ + 2L(a|

ce′

Wb)ce′

R′′
ab :=Rac′b

c′ = −( ˜̃∇(aκ′)b) − ( ˜̃∇c′W )ab
c′ −

1

k
( ˜̃∇c′κ)c′ηab + W ′c

′e′

aW ′
c′e′b +

1

k′
κ′

aκ′
b −

− L′c
′e′

aL′
c′e′b − Wa

ec′Wbec′ +
1

k2
ηabκ

2 − La
ec′Lbec′ − 2L(a

ec′We|b)c′

again similarly for the R′
a′b′ component. The Riemann curvature scalar is given

by

R =R + 2R′′ + R′ = ˜̃R + ˜̃R′ +
1 − k

k
κ2 +

1 − k′

k′
κ′2 − 2∇ · κI + W 2 + W ′2 + L2 + L′2

where the following definitions were used

R = ˜̃R + κ2 − K2 + 3L2

R′′ = − ˜̃∇a′κa′

− ˜̃∇aκ′a + W 2 − L2 +
1

k
κ2 + W ′2 − L′2 +

1

k′
κ′2

R′ = ˜̃R′ + κ′2 − K ′2 + 3L′2
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4.4 Their conformal properties

In an earlier treatment it was found that conformal transformations does affect
a connection including torsion and non-metricity in a non-trivial fashion. Here
will be given a complete analysis of the induced transformations of the Vidal,
adapted and Levi–Civita connections.

Definition 4.28

Let the triplet (M , g, I) denote an almost product manifold, let ∇, ∇̃, ˜̃∇ de-
note the Levi–Civita, adapted and Vidal connection respectively then define

the associated conformal tensors denoted C , C̃ ,
˜̃
C with characteristics

C , C̃ ,
˜̃
C : Λ1 × Λ1 7−→ Λ1

by

C (X, Y ) :=c∇XY −∇XY

C̃ (X, Y ) :=c∇̃XY − ∇̃XY

˜̃
C (X, Y ) :=c˜̃∇XY − ˜̃∇XY

where X, Y ∈ L1 are vectorfields on M .

The conformal tensor, corresponding to the Vidal and the adapted connection,
can most easily be expressed in terms of the conformal tensor of the Levi–Civita
connection.

Proposition 4.29

Let C , C̃ ,
˜̃
C be the conformal tensors defined in 4.28 then following relations

hold

C (X, Y ) = X [φ]Y + Y [φ]X − g(X, Y )♯dφ

C̃ (X, Y ) = PC (X,PY ) + P ′
C (X,P ′Y )

˜̃
C (X, Y ) = PC (PX,PY ) + P ′

C (P ′X,P ′Y )

where X, Y ∈ Λ1 are vectorfields on M .

proof: To be added. �

The difference between these conformal tensors manifests itself in a clearer way
by studying the expressions in component form. The conformal tensor of the
Levi–Civita connection is read of from the above proposition and is noticeably
symmetric.

Proposition 4.30

Let C be the conformal tensor of the Levi–Civita connection then in component
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form it reads,

C ab
c =2δc

(aEb)[φ] − ηabη
cdEd[φ]

C ab
c′ = − ηabη

c′d′

Ed′ [φ]

C a′b
c =Ea′ [φ]δc

b

C ab′
c′ =Ea[φ]δc′

b′ ,

C a′b′
c = − ηa′b′η

cdEd[φ]

C a′b′
c′ =2δc′

(a′Eb′)[φ] − ηa′b′η
c′d′

Ed′ [φ]

The conformal tensor of the adapted connection can now be derived from the
above expressions. It should be stressed though that it is not symmetric.

Proposition 4.31

Let C̃ be the conformal tensor of the adapted connection then in component
form it reads

C̃ ab
c =2δc

(aEb)[φ] − ηabη
cdEd[φ]

C̃ ab
c′ =0

C̃ ab′
c =0

C̃ a′b
c =Ea′ [φ]δc

b

C̃ ab′
c′ =Ea[φ]δc′

b′

C̃ a′b
c′ =0

C̃ a′b′
c =0

C̃ a′b′
c′ =2δc′

(a′Eb′)[φ] − ηa′b′η
c′d′

Ed′ [φ]

Finally in the case of the Vidal connection the conformal tensor takes a very
simple form and will, like in the Levi–Civita case, be symmetric.

Proposition 4.32

Let
˜̃
C be the conformal tensor of the Vidal connection then in component form
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it reads

˜̃
C ab

c =2δc
(aEb)[φ] − ηabη

cdEd[φ]

˜̃
C ab

c′ =0

˜̃
C ab′

c =0

˜̃
C a′b

c =0

˜̃
C ab′

c′ =0

˜̃
C a′b

c′ =0

˜̃
C a′b′

c =0

˜̃
C a′b′

c′ =2δc′

(a′Eb′)[φ] − ηa′b′η
c′d′

Ed′ [φ]

Well known is the fact that when decomposing the Riemann curvature tensor of
the Levi–Civita connection into its irreducible parts with respect to its traces,
the appearing Weyl tensors measures whether the riemannian manifold is con-
formally flat or not. More specifically, the vanishing of the Weyl tensor is the
condition for local conformal flatness in the case when the dimension of the
manifold exceeds three. The tracefree part of the Ricci tensor is defined by,

R̂āb̄ := Rāb̄ −
1

m
Rηāb̄ (16)

Next the Ricci one-form and the tracefree Ricci one-form are defined.

Definition 4.33

Let Rab, R̂ab denote the Ricci tensor and its tracefree part respectively then
define their one forms by

Rā :=E b̄Rb̄
ā

R̂
ā

:=E b̄R̂b̄
ā = Rā −

1

m
REā

Denoting the Rimann two form Rcd = 1
2Ea ∧ EbRab

cd and the Weyl two form

by Ccd = 1
2Ea ∧ EbCab

cd the decomposition is most elegantly written

=
˜

⊕ ˜ ⊕
⊙

1
12m2(m2 − 1) = 1

12 (m − 3)m(m + 1)(m + 2) + 1
2 (m − 1)(m + 2) + 1

Rc̄d̄ = C c̄d̄ + 2
m−2 R̂

[c̄
∧ Ed̄] + 1

m(m−1)RE c̄ ∧ Ed̄
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After reinserting the expression for the tracefree part of the Ricci tensor and
solving for the Weyl tensor the more familiar form is obtained

C āb̄
c̄d̄ = Rāb̄

c̄d̄ −
4

m − 2
δ
[c̄
[āR

d̄]

b̄]
+

2

(m − 1)(m − 2)
Rδ

[c̄
[āδ

d̄]

b̄]
(17)

From this equation the different components are read off and put in next propo-
sition.

Proposition 4.34

Let C c̄d̄ be the weyl tensor in an almost product manifold then its components
look like

Cab
cd =Rab

cd −
4

m − 2
δ
[c
[aR

d]
b] +

2

(m − 1)(m − 2)
Rδ

[c
[aδ

d]
b]

Cab
cd′

=Rab
cd′

−
2

m − 2
δc
[aRd′

b]

Cab
c′d′

=Rab
c′d′

Ca′b
c′d =Ra′b

c′d −
1

m − 2
(δc′

a′Rd
b + δd

b Rc′

a′) +
1

(m − 1)(m − 2)
Rδc′

a′δd
b

Ca′b′
c′d =Ra′b′

c′d −
2

m − 2
δc′

[a′R
d
b′]

Ca′b′
c′d′

=Ra′b′
c′d′

−
4

m − 2
δ
[c′

[a′
R

d′]
b′] +

2

(m − 1)(m − 2)
Rδ

[c′

[a′
δ

d′]
b′]

From above proposition it is for instance clear that the Rabc′
d′

component of
the Riemann tensor must be conformally invariant. Taking a look at its fi-
nal expression in proposition 4.24 the only non-manifest conformally invariant
terms, are those involving derivatives. These can be proved to be independently
conformally invariant.

Proposition 4.35

Let L, L′ be the respective twisting tensors of the characteristic distributions
defined by an almost product structure on M then the following relations hold

c∇̃[Z′LW ′](X, Y ) =e2φ∇̃[Z′LW ′](X, Y )

c∇̃[ZL′
W ](X

′, Y ′) =e2φ∇̃[ZL′
W ](X

′, Y ′)

or put in component form

(c∇̃[c′L)ab|d′] =e2φ(∇̃[c′L)ab|d′]

(c∇̃[cL
′)a′b′|d] =e2φ(∇̃[cL

′)a′b′|d]

Proceeding in the same fashion as in [8],investigating how the curvature com-
ponents of the adapted connection can be divided into irreducible parts - in
the case of an almost product manifold instead as for just an embedding, some
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immediate differences is noticed. The generalisation of what Carter calls the
outer curvature is the R̃ab

c′d′

component which will be seen not to be con-
formally invariant in the generic case but only if the unprimed distribution is
integrable. The same is of course true for the outer curvature of the comple-
mentary (primed) distribution. From proposition 4.19 it is manifest that the
non-invariant components are

2

k
Lab[c′κd′]

and
2

k′
L′

a′b′[cκ
′
d]

respectively. For the internal curvature which in the language of almost product
manifolds is the total semi-basic components of the adapted curvature, one can
follow the procedure of dividing the tensor components into its irreducible parts
according to the above scheme. In the generic case the semi-basic components
does not have the box symmetry

. Because of torsion though, it has the other symmetry parts. It is clear that
when the distribution is integrable its internal curvature will indeed have the
box symmetry. Defining the internal Weyl tensors the generalization of [8, 9]
can be made.

Definition 4.36

Let R̃ be the curvature tensor of the adapted connection and R̃ab
cd, R̃a′b′

c′d′

the internal curvatures of the two complementary distributions associated with
an almost product manifold then define their respective Weyl tensors by

C̃ab
cd =R̃ab

cd −
4

k − 2
δ
[c
[aR̃

d]
b] +

2

(k − 1)(k − 2)
R̃δ

[c
[aδ

d]
b]

C̃′
a′b′

c′d′

=R̃′
a′b′

c′d′

−
4

k′ − 2
δ
[c′

[a′R̃
′d

′]
b′] +

2

(k′ − 1)(k′ − 2)
R̃′δ

[c′

[a′δ
d′]
b′]

where

R̃ab
cd :=R̃ab

cd, R̃b
a :=R̃ac

bc, R̃ :=R̃ab
ab,

R̃′
a′b′

c′d′

:=R̃a′b′
c′d′

, R̃′b′

a′ :=R̃a′c′
b′c′ , R̃′ :=R̃a′b′

a′b′ .

Following Carter’s procedure it is now easy to generalize his relations to the
case of an almost product manifold.

Proposition 4.37

Let C̃, C̃′ be the Weyl tensors of the internal curvatures of the two comple-
menatry distributions associated with an almost product manifold. Then the
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following relations hold.

C̃ab
cd =Cab

cd −
4

k − 2
δ
[c
[aC

d]
b] +

2

(k − 1)(k − 2)
C −

− 2(L[a|
c
e′Lb]

de′

+ 2L[a|
[c

e′Wb]
d]e′

) −

−
4

k − 2
(δ

[c
[a|Lb]

e
e′Le

d]e′

+ δ
[c
[a|Wb]

e
e′We

d]e′

+ δ
[c
[a|Lb]

e
e′We

d]e′

+

+ δ
[c
[a|Wb]

e
e′Le

d]e′

) +

+
2

(k − 1)(k − 2)
δc
[aδd

b](W
2 − L2),

C̃′
a′b′

c′d′

=C′
a′b′

c′d′

−
4

k′ − 2
δ
[c′

[a′C
′d

′]
b′] +

2

(k′ − 1)(k′ − 2)
C′ −

− 2(L′
[a′|

c′

eL
′
b′]

d′e + 2L′
[a′|

[c′
eW

′
b′ ]

d′]e) −

−
4

k′ − 2
(δ

[c′

[a′|L
′
b′]

e′

eL
′
e′

d′]e + δ
[c′

[a′|W
′
b′]

e′

eW
′
e′

d′]e + δ
[c′

[a′|L
′
b′]

e′

eW
′
e′

d′]e +

+ δ
[c′

[a′|W
′
b′]

e′

eL
′
e′

d′]e) +

+
2

(k′ − 1)(k′ − 2)
δc′

[a′δd′

b′](W
′2 − L′2)

where

Cab
cd :=Cab

cd, Cb
a :=Cac

bc, C :=Cab
ab

C′
a′b′

c′d′

:=Ca′b′
c′d′

, C′b′

a′ :=C′
a′c′

b′c′ , C′ :=C′
a′b′

a′b′ .

From this proposition it follows that if the semi-basic part of the conformal
tensor is zero and the distribution is integrable then the distribution possess
local conformal flatness if and only if its conformation tensor vanishes. Of
course this is only true in the case where k > 3. This generalizes Carter’s result
to the case of almost product manifold.

5 Physical applications

There are lots of physical applications involving almost product manifolds. Be-
cause principal bundles can be regarded as a almost product manifold with
the (GF, GD) structure ordinary gauge theory can be found in its utmost geo-
metrical form. In Kaluza–Klein theory the internal space need not be a group
manifold but could instead be a homogenous space with the proper gauge group
as its isometry group. Here will be given an example of the recovered Kaluza–
Klein theory from the almost product structure taken first in the most general
case where no restriction of the fiber is made.

Example 5.1
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Kaluza-Klein theory

Here will be seen how, in the case of a (GF, GD) structure, the Vidal connection
will reduce to the gauge covariant derivative. The Einstein–Hilbert action will
reduce to the inner curvatures plus the gauge field term as in [10]. First note
the spliting of the action in the (GF, GD) case,

∫

d
m

x
√

gR =

∫

d
k
xd

k′

y
√

g
√

g′( ˜̃
R + ˜̃

R
′ + L

2). (18)

Note that the primed distribution is chosen to be integrable. Following [10] the
vielbeins can locally be parametrized as

Ea =Ea + A
i
aKi, Ea′ = Ea′

E
a =E

a
, E

a′

=E
a′

− E
a
A

i
aK

a′

i

where Ki = Ki
a′

(y)Ea′(y) are the Killing vectors of the integrable internal
manifold. These satisfy an algebra

[Ki, Kj ] = fij
k
Kk. (19)

where the structure constants fij
k of the isometry group and does not depend

on y. The gauge fieldstrength F i = dAi + 1
2
fjk

iAj ∧Ak is most easily found [1]

F (X, Y ) = P ′[X, Y ] = 2L(X, Y ) (20)

where X, Y are unprimed vector fields which implies that the L2 term in the
action reads 1

4
F 2 which is the ordinary action term in gauge theory. Now the

Vidal connection of the gauge field can be written

( ˜̃∇XF )(Y,Z) = (∇D

XF )(Y,Z) + F
i(Y,Z)P ′[X, Ki], (21)

written in component form, the relations look like,

( ˜̃∇aF )i
bc = (∇D

a F )i
bc + f

i
jkA

j
aF

k
bc (22)

which is precisely the gauge covariant derivative. Further the identity from

proposition 4.10 ( ˜̃∇[aL)bc]
d′

= 0 reduces to the Bianchi identity of the gauge
field

( ˜̃∇[aF )i
bc] = 0 (23)

the Rab′ term from proposition 4.27 reduces to

Rab′ =
1

2
( ˜̃∇cF )i

a
c
Kib′ (24)

which from the Einstein’s equations point of view reduces to the equations of

motion for the gauge field, i.e. ( ˜̃∇cF )i
a

c = 0. So it is clear that gauge theory and

Kaluza-Klein theory is contained in the almost product manifold description.

In the general case however the Killing vectors could be exchanged to ordinary

vielbeins, the structure coefficients need not be constant and the fiber no longer

a group space or homogenous space, the almost product structure procedure

would still be valid. In the case of Kaluza-Klein theory containing the dilaton

field it is easy to see that it is contained in the mean curvature, κ, see [1].
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Another more traditional example is the decomposition of the four dimensional
curvature scalar into three space in hamiltonian formulation of ordinary Ein-
stein gravity. From proposition 4.26 the decomposition of the curvature scalar
is immediately found to be R = R̃ − κ2 + K2. From a foliation point of view it
is clear that a space with non-degenerate metric of Minkowskian signature must
have vanishing euler number which is also the condition for a space to have a
codimension one foliation [11, 12]. This is why the L2 term can be set to zero.

6 Conclusions and outlook

The theory of almost product manifolds is seen to overlap with a lot of physical
applications. The main areas is of course geometrical phyics such as gravity,
Kaluza-Klein theory and ordinary gauge theory. Here was seen for instance
that in gauge- or Kaluza-Klein theory the Vidal connection reduces to the ordi-
nary gauge covariant derivative and the second curvature identity of the Vidal
curvature gives the Bianchi identity of the gauge field. The relations found
propositions 4.26 and 4.27 could perhaps be used to find new solutions to the
equations of motions of various supergravity theories. Here the the Ricci tensors
are given in the most general case why all kind of brane solutions must fit in this
scheme. From these relations it should also be clear that a black hole solution in
ordinary space-time carrying a gauge field charge should correspond to a black
hole solution in the total space with rotational parameters corresponding to the
gauge charges. The reason for this is of course the identification of the twist-
ing tensor as the gauge fieldstrength. In super gravity theories the black hole
solutions carry charges from anti-symmetric tensor fields and will be p-brane so-
lutions. These can again have rotational parameters in the transverse directions
which correspond to gauge field charges of the isometry group of the transverse
space [3, 13] which by analysis in [1] would correspond to a non-integrability of
the brane itself in this context.

Another interesting investigation would be to see how the Clifford algebra
splits in a almost product manifold. In a appearing paper [14] will be shown
how flat super space looks in the almost product structure picture.

Acknowledgments: The authors would like to thank Martin Cederwall and
Robert Marnelius for discussions.

A Tic–Tac–Toe notation

The Tic-Tac-Toe notation can most easily be described by working through the
first non-trivial Young tableau, which is the (2,1) one.

= o o
o

⊕ o x
o

⊕ o o
x

⊕ x x
o

⊕ x o
x

⊕ x x
x

(25)

Above the Tic-Tac-Toe notation was used where the o’s labels unprimed degrees
of freedom and the x’s primed ones. The Tic-Tac-Toe tableaux works exactly
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as an ordinary Young-tableau. Since the primed and the unprimed directions
does not talk with each other when it comes to symmetries, the dimension of
a Tic-Tac-Toe tableau equals the product of the dimensions of the pure primed
and unprimed sub-tableaux respectively. Their respective dimensions read

m(m2 − 1)

3
=

k(k2 − 1)

3
+

k(k − 1)k′

2
+

k(k + 1)k′

2
+

+
k′(k′ + 1)k

2
+

k′(k′ − 1)k

2
+

k′(k′2 − 1)

3

where k′ = m − k. The decomposition of an arbitrary Young tableau can be
done in a similar fashion.
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